On the Half-Life of 44Ti in Young Supernova Remnants

Eric B. Norman and Edgardo Browne
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
ebnorman@lbl.gov

Abstract: The electron-capture decay rate of 44Ti strongly depends on the number of atomic electrons that are bound to the nucleus. Recent x-ray observations of the Cas A and RXJ0852.0-4622 supernova remnants suggest that conditions of high temperatures and low densities exist in these objects. Under such conditions, the half-life of 44Ti would be significantly longer than its laboratory value. This effect implies that only an upper limit on the mass of 44Ti ejected by supernovae can be deduced from gamma-ray observations of these two supernova remnants.

The long-lived radioisotope 44Ti is currently of considerable interest in astrophysics. The relevant portions of its decay scheme and that of its daughter, 44Sc, are shown in Figure 1. 44Ti decays via electron-capture to 44Sc emitting γ-rays of 68, 78, and a very weak one of 146 keV. 44Sc subsequently decays via electron capture and positron emission with a 3.9-hour half-life to 44Ca emitting an 1157-keV γ-ray.

44Ti is one of the few long-lived γ-ray emitting nuclides expected to be produced in substantial amounts during a supernova explosion (Clayton, 1982). Its characteristic 1157-keV γ ray was observed from the young supernova remnant Cassiopeia A [Cas A] (Iyudin et al., 1994) and more recently from supernova remnant, RXJ0852.0-4622 (Aschenbach, 1998; Iyudin et al., 1998). In order to deduce the mass of 44Ti ejected in these explosions using the γ-ray fluxes measured from these supernova remnants, one needs to know their ages and distances as well as the half-life of 44Ti.

For Cas A, there are reasonably good historical records that this supernova exploded in about 1680. For RXJ0852.0-4622, Aschenbach (1998) has estimated an age of less than 1500 years and Iyudin et al. (1998) estimated about 680 years. Until last year, there was great uncertainty in the
half-life of ^{44}Ti because published values ranged from 39.0 years (Meissner, 1996) to 66.6 years (Alburger and Harbottle, 1990). The results of four recent experimental studies (Norman et al., 1998; Ahmad et al., 1998, Gorres et al., 1998; Wietfeldt et al., 1999) however, have yielded a consistent value of 60 ± 1 years for the laboratory half-life of ^{44}Ti.

![Figure 1. Decay schemes of ^{44}Ti and ^{44}Sc. All energies are given in keV.](image)

In the laboratory the electron-capture decay of ^{44}Ti takes place with neutral atoms. Thus, 22 bound atomic electrons surround the ^{44}Ti nucleus. The binding energy of a 1s electron in a neutral Ti atom is 4.966 keV, and that of a 2s electron is 0.564 keV. For a neutral ^{44}Ti atom, the probability of electron capture from the K. (1s) shell is 0.8891 and from the L-shell (2s) is 0.0960. Therefore, neglecting electron screening, for a charge-state 19^+Ti ion (i.e., one electron in the 2s shell) its half-life would be $\left(\frac{60\text{yr}}{0.9371}\right) = 64$ years. For a charge-state 20^+ ion (zero electrons in the 2s shell) its half-life would be $\left(\frac{60\text{yr}}{0.8891}\right) = 67.5$ years, and for a charge-state 21^+ ion (one electron in the 1s shell) its half-life would be $\left(\frac{60\text{yr}}{0.4446}\right) = 135$ years. Finally, for a charge-state 22^+ ^{44}Ti ion (no bound electrons), electron capture decay would not be possible and the nucleus would become stable.