Chapter 7

Transfer and p-Factor Groups

7.1 The Transfer Homomorphism

To search for nontrivial proper normal subgroups is often the first step in the investigation of a finite group. For example, if the group G has such a normal subgroup N, then in proofs by induction one frequently gets information about N and G/N, allowing one to derive the desired result for G (e.g., 6.1.2 on page 122).

Since normal subgroups are kernels of homomorphisms it is suggestive to construct homomorphisms of G in order to find normal subgroups. The difficulty then is to decide whether the kernel of such a homomorphism is a nontrivial and proper subgroup of G.

In the following let P be a subgroup of G. In this chapter we define a homomorphism τ from G into the Abelian group P/P', whose kernel and image can be described by means of p-elements if P is a Sylow p-subgroup of G. This is in the spirit of the philosophy mentioned earlier, that the structure of a group be deduced from its p-structure.

If G is non-Abelian, then clearly $\ker \tau$ is nontrivial since $G/\ker \tau$ is Abelian. Hence, either G contains a proper nontrivial normal subgroup or $G = \ker \tau$. In the second case the description of $\ker \tau$ in terms of the conjugacy of p-elements in G will yield information concerning the structure of G.

H. Kurzweil et al., The Theory of Finite Groups
© Springer-Verlag New York, Inc. 2004
Let
\[\overline{P} := P/P' \]
be the commutator factor group of \(P \) and

\[P \to \overline{P} \quad \text{with} \quad x \mapsto \overline{x} \]

the natural epimorphism to the *Abelian* group \(\overline{P} \).

Let \(S \) be the set of transversals of \(P \) in \(G \). For \(R, S \in S \) let

\[R|S := \prod_{(r,s) \in R \times S, \overline{r}_r = \overline{P}_s} r_s^{-1} \quad (\in \overline{P}). \]

(Compare with the definition on page 71.) Since the factors are elements of the Abelian group \(\overline{P} \) this product does not depend on their ordering. As in Section 3.3 for \(R, S, T \in S \) the following properties hold:

1. \((R|S)^{-1} = S|R\)
2. \((R|S) (S|T) = R|T.\)

We investigate the action of \(G \) on \(S \) by right multiplication:

\[S \xrightarrow{g \in G} Sg. \]

Then

3. \(Rg \mid Sg = R|S \)

and

4. \(Rg \mid R = Sg \mid S. \)

For the proof of (4) note that

\[(Rg|R) (Sg|S)^{-1} = (Rg|R) (R|Sg)(R|Sg)^{-1} (Sg|S)^{-1} \]

\[= (Rg|R) (R|Sg) ((R|Sg) (Sg|S))^{-1} \]

\[\stackrel{(2)}{=} (Rg|Sg) (R|S)^{-1} \stackrel{(3)}{=} 1. \]

7.1.1 Transfer Homomorphism.

Let \(S \in S. \) The mapping

\[\tau_{G \to \overline{P}} : G \to \overline{P} \quad \text{with} \quad g \mapsto Sg|S \]

is a homomorphism that is independent of the choice of \(S \in S. \)