Localization in Wireless Ad Hoc Networks

Dmitri D. Perkins, Ramesh Tumati, Hongyi Wu, and Ikhlas Ajbar
The Center for Advanced Computer Studies
University of Louisiana at Lafayette
E-mail: {perkins, rxt2909, wu}@cacs.louisiana.edu

Contents

1 Introduction 508
 1.1 What Are Ad Hoc Networks? 508
 1.2 Why Localization in Ad Hoc Networks? 510
 1.3 Why Not GPS? 511
 1.4 Designing Localization Algorithms for Ad Hoc Networks 512
 1.4.1 Assumptions 512
 1.4.2 Design Issues and Goals 513

2 How Node Localization Works 514
 2.1 Range-based Methods 515
 2.1.1 Distance-based Techniques 515
 2.1.2 Direction-based Techniques 517
 2.2 Connectivity-based Approach 518

3 Localization Techniques in Infrastructured Systems 519

4 Localization Algorithms for Ad Hoc Networks 521
 4.1 Range-based Algorithms 521
 4.1.1 Ad-Hoc Localization System (AHLoS) 521
 4.1.2 Robust Positioning Algorithm 525
 4.1.3 A Directionality-based Localization Scheme 526
 4.1.4 A Localized Algorithm 527
 4.1.5 A Self Positioning Algorithm 528
 4.2 Connectivity-based Algorithms 531
 4.2.1 Localization from Mere Connectivity 531
 4.2.2 APIT: An Area-based Localization Scheme 533
 4.2.3 GPS-less localization Algorithm 534
 4.2.4 Convex Position Estimation in wireless sensor networks 535
1 Introduction

Node localization, position estimation, and geolocation are all terms that are widely used to describe the process of estimating the position or location of a mobile node (MN) with respect to some spatial coordinate system\cite{8}. In this chapter, we discuss the challenges and highlight current research developments in the area of node localization in wireless ad hoc networks1\cite{2, 6}.

1.1 What Are Ad Hoc Networks?

As communication devices become more intelligent and detached from wired networks, researchers are envisioning a truly ubiquitous computing environment that will allow users to communicate from anywhere and at anytime. Wireless ad hoc networks\cite{6}—an emerging network architecture with several unique characteristics, are part of this vision. Ad hoc networks are infrastructureless self-organizing, peer-to-peer, and rapidly deployable\cite{9, 5, 22}. They are comprised of wireless nodes, which can be deployed anywhere, and must cooperate in order to dynamically establish communications using limited network management and administration\cite{7}. Nodes in an ad hoc network may be highly mobile, or stationary, and may vary widely in terms of their capabilities and uses\cite{15}. The primary objectives of this new network architecture are to achieve increased flexibility, mobility and ease of management relative to infrastructured wireless networks. This is achieved by eliminating the need for fixed base stations (BSs) (as in cellular networks and wireless LANs); thereby, enabling instant infrastructure wherever ad hoc nodes are activated, and eliminating many of the constraints to node mobility that are imposed by a fixed network. Due to their inherent flexibility, ad hoc networks have the potential to serve as a ubiquitous wireless infrastructure, capable of interconnecting thousands of devices\cite{23} and supporting a wide range of networking applications. It is hoped that ad hoc networks will emerge as an effective complement to infrastructured LANs

1The term \textit{wireless ad hoc network} includes both mobile ad hoc (MANETs) and sensor ad hoc networks.