Chapter 4

Alternative Causes of Wide-Spread, Low Concentration Perchlorate Impacts to Groundwater

Carol Aziz, Robert Borch, Paul Nicholson, and Evan Cox

GeoSyntec Consultants, Guelph, ON, Canada

INTRODUCTION

The frequency of detection of perchlorate in groundwater and drinking water supplies has been steadily increasing since its initial identification as a chemical of concern in 1997. It is currently estimated that perchlorate is present in groundwater in at least 30 states and affects the drinking water supplies of more than 20 million people in the southwestern United States (U.S.). The source of perchlorate in water supplies has typically been attributed to U.S. Department of Defense (DOD), National Aeronautics & Space Administration (NASA) and/or defense contractor facilities that have used ammonium perchlorate (AP) in rocket and missile propellants.

As a result of its high profile and its addition to the Unregulated Contaminant Monitoring Rule (UCMR List 1), which requires perchlorate analysis by large public water suppliers and selected small water utilities, most public water supplies are now being routinely analyzed for perchlorate. Through monitoring activities, perchlorate has been detected at low levels (typically less than 50 µg/L) in a significant number of areas without apparent military sources.

While natural sources or formation mechanisms for perchlorate may explain its presence in some cases,

\[1,2\] widespread, low concentration perchlorate impacts in groundwater can apparently also result from a variety of non-military-based inputs as well, potentially including:

i) storage, handling and use of Chilean nitrate-based fertilizers containing perchlorate;

ii) manufacturing, storage, handling, use and/or disposal of fireworks containing perchlorate;

iii) manufacturing, storage, handling, use and/or disposal of road flares containing perchlorate;
iv) manufacturing, storage, handling, use and/or disposal of explosives or pyrotechnics containing perchlorate; and/or

v) manufacture, storage, handling and use of electrochemically-prepared (ECP) chlorine products, primarily those that contain chlorate or were manufactured from chlorate feedstocks.

The potential impacts of these non-military perchlorate products and processes on the environment are discussed in the following sections.

CHILEAN NITRATE FERTILIZERS

Research by the U.S. Environmental Protection Agency (EPA) has confirmed that perchlorate is present in nitrate-based fertilizers manufactured from naturally-occurring caliche deposits mined from the Atacama Desert region of Chile. Historical agronomic literature indicates that Chilean nitrate fertilizers were widely used in specific agricultural practices in the early to mid 1900s. Past import statistics for Chilean nitrate and historical agronomic guidelines for sodium nitrate application for various crops (discussed below) indicate that significant quantities of perchlorate may have been unknowingly applied to agricultural soils over many decades from the early to mid 1900s. While the use of Chilean nitrate fertilizers steadily declined since about the 1930s, there is evidence of continued use through to the present day. For example, imports of fertilizer grade sodium nitrate supplied 27% and 6% of the total nitrogen used as fertilizer in 1939 and 1954, respectively. Since 2002, it is estimated that some 75,000 tons of Chilean nitrate fertilizer have been used annually in the U.S.

This section summarizes pertinent information related to the import and use of Chilean nitrate fertilizers and explores the potential for present-day perchlorate impacts to groundwater from historical and on-going Chilean nitrate fertilizer uses for specific agricultural practices.

Chilean Nitrate Imports

Between 1909 to 1918 and 1925 to 1929, the U.S. imported approximately 7,500,000 and 5,300,000 tons of Chilean, respectively, for a total of approximately 13,000,000 tons of Chilean nitrate. If we assume (based on these estimates) that approximately 1 million tons of Chilean nitrate were imported annually during 1919 through 1924, then approximately 19 millions tons of Chilean nitrate fertilizer were likely imported into the U.S. between 1909 and 1929.