Interval Methods: An Introduction

Organizers: Luke E.K. Achenie1, Vladik Kreinovich2, and Kaj Madsen3

1 Department of Chemical Engineering, Unit 3222
University of Connecticut, Storrs, CT, USA
achenie@engr.uconn.edu

2 Department of Computer Science, University of Texas
El Paso, TX 79968, USA
vladik@cs.utep.edu

3 Department of Informatics and Mathematical Modelling, Technical University of Denmark
DK-2800 Lyngby, Denmark
km@imm.dtu.dk

\textbf{Abstract.} This chapter contains selected papers presented at the Minisymposium on Interval Methods of the PARA’04 Workshop “State-of-the-Art in Scientific Computing”. The emphasis of the workshop was on high-performance computing (HPC). The ongoing development of ever more advanced computers provides the potential for solving increasingly difficult computational problems. However, given the complexity of modern computer architectures, the task of realizing this potential needs careful attention. A main concern of HPC is the development of software that optimizes the performance of a given computer.

An important characteristic of the computer performance in scientific computing is the accuracy of the computation results. Often, we can estimate this accuracy by using traditional statistical techniques. However, in many practical situations, we do not know the probability distributions of different measurement, estimation, and/or roundoff errors, we only know estimates of the upper bounds on the corresponding measurement errors, i.e., we only know an \textit{interval} of possible values of each such error. The papers from the following chapter contain the description of the corresponding “interval computation” techniques, and the applications of these techniques to various problems of scientific computing.

\textbf{Why Data Processing?}

In many real-life situations, we are interested in the value of a physical quantity \(y\) that is difficult or impossible to measure directly. Examples of such quantities are the distance to a star and the amount of oil in a given well. Since we cannot measure \(y\) directly, a natural idea is to measure \(y\) \textit{indirectly}. Specifically, we find some easier-to-measure quantities \(x_1, \ldots, x_n\) which are related to \(y\) by a known relation \(y = f(x_1, \ldots, x_n)\); this relation may be a simple functional transformation, or complex algorithm (e.g., for the amount of oil, numerical solution to an inverse problem). Then, to estimate \(y\), we first measure the values of the quantities \(x_1, \ldots, x_n\), and then we use the results \(\tilde{x}_1, \ldots, \tilde{x}_n\) of these measurements to compute an estimate \(\tilde{y}\) for \(y\) as \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)\).

For example, to find the resistance \(R\), we measure current \(I\) and voltage \(V\), and then use the known relation \(R = V/I\) to estimate resistance as \(\tilde{R} = \tilde{V}/\tilde{I}\).
In this example, the relation between \(x_i \) and \(y \) is known exactly; in many practical situations, we only known an approximate relation \(y \approx \tilde{f}(x_1, \ldots, x_n) \) between \(x_i \) and \(y \). In such situations, the estimate \(\tilde{y} \) for \(y \) is computed as \(\tilde{y} = \tilde{f}(\tilde{x}_1, \ldots, \tilde{x}_n) \).

Computing an estimate for \(y \) based on the results of direct measurements is called data processing; data processing is the main reason why computers were invented in the first place, and data processing is still one of the main uses of computers as number crunching devices.

Why Interval Computations?

From Computing to Probabilities to Intervals

Measurement are never 100% accurate, so in reality, the actual value \(x_i \) of \(i \)-th measured quantity can differ from the measurement result \(\tilde{x}_i \). Because of these measurement errors \(\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i \), the result \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) of data processing is, in general, different from the actual value \(y = f(x_1, \ldots, x_n) \) of the desired quantity \(y \).

It is desirable to describe the error \(\Delta y \overset{\text{def}}{=} \tilde{y} - y \) of the result of data processing. To do that, we must have some information about the errors of direct measurements.

What do we know about the errors \(\Delta x_i \) of direct measurements? First, the manufacturer of the measuring instrument must supply us with an estimate of the upper bound \(\Delta_i \) on the measurement error. (If no such upper bound is supplied, this means that no accuracy is guaranteed, and the corresponding “measuring instrument” is practically useless.) In this case, once we performed a measurement and got a measurement result \(\tilde{x}_i \), we know that the actual (unknown) value \(x_i \) of the measured quantity belongs to the interval \(x_i = [\tilde{x}_i, \bar{x}_i] \), where \(\tilde{x}_i = \tilde{x}_i - \Delta_i \) and \(\bar{x}_i = \tilde{x}_i + \Delta_i \).

In many practical situations, we not only know the interval \([-\Delta_i, \Delta_i] \) of possible values of the measurement error; we also know the probability of different values \(\Delta x_i \) within this interval. This knowledge underlies the traditional engineering approach to estimating the error of indirect measurement, in which we assume that we know the probability distributions for measurement errors \(\Delta x_i \).

In practice, we can determine the desired probabilities of different values of \(\Delta x_i \) by comparing the results of measuring with this instrument with the results of measuring the same quantity by a standard (much more accurate) measuring instrument. Since the standard measuring instrument is much more accurate than the current one, the difference between these two measurement results is practically equal to the measurement error; thus, the empirical distribution of this difference is close to the desired probability distribution for measurement error. There are two cases, however, when this determination is not done:

- First is the case of cutting-edge measurements, e.g., measurements in fundamental science. When a Hubble telescope detects the light from a distant galaxy, there is no “standard” (much more accurate) telescope floating nearby that we can use to calibrate the Hubble: the Hubble telescope is the best we have.
- The second case is the case of measurements on the shop floor. In this case, in principle, every sensor can be thoroughly calibrated, but sensor calibration is so costly – usually costing ten times more than the sensor itself – that manufacturers rarely do it.