Abstract. Using only a simple transition relation one cannot model commands that may or may not terminate in a given state. In a more general approach commands are relations enriched with termination vectors. We reconstruct this model in modal Kleene algebra. This links the recursive definition of the \texttt{do od} loop with a combination of the Kleene star and a convergence operator. Moreover, the standard \texttt{wp} operator coincides with the \texttt{wlp} operator in the modal Kleene algebra of commands. Therefore our earlier general soundness and relative completeness proof for Hoare logic in modal Kleene algebra can be re-used for \texttt{wp}. Although the definition of the loop semantics is motivated via the standard Egli-Milner ordering, the actual construction does not depend on Egli-Milner-isotony of the constructs involved.

1 Introduction

Total correctness has been extensively studied, a.o. using relational methods. One line of research (see e.g. [3]\cite{8}\cite{9}\cite{12}\cite{24}) provides strongly demonic semantics for regular programs. There, however, one cannot model commands that may or may not terminate in a given state. A second line of research (e.g. [4]\cite{5}\cite{13}\cite{23}\cite{25}) provides a weakly demonic semantics that allows such more general termination behaviour. We reconstruct the latter approach in modal Kleene algebra. This provides a new connection between the recursive definition of the \texttt{do od} loop and a combination of the Kleene star with convergence algebra. Moreover, it turns out that the standard \texttt{wp} operator coincides with the \texttt{wlp} operator of a suitable modal algebra of commands. Therefore the general soundness and relative completeness proof for Hoare logic in modal Kleene algebra given in [21] can be re-used for \texttt{wp} (where now, of course, expressiveness has to cover termination). Although the definition of the loop semantics is motivated via the standard Egli-Milner ordering, its actual construction does not depend on Egli-Milner-isotony of the constructs involved. A number of simple proofs are omitted due to lack of space; they can be found in the technical report [22].

2 Weak and Modal Semirings

A weak semiring is a quintuple \((S, +, 0, \cdot, 1)\) such that \((S, +, 0)\) is a commutative monoid and \((S, \cdot, 1)\) is a monoid such that \(\cdot\) distributes over \(+\) and is left-strict,
i.e., $0 \cdot a = 0$. S is idempotent if $+$ is. In this case the relation $a \leq b \overset{\text{def}}{=} a + b = b$ is an order, called the natural order on S, with least element 0. Moreover, \cdot is isotope w.r.t. \leq. A semiring is a weak semiring where \cdot is also right-strict, i.e., $a \cdot 0 = 0$.

An important idempotent semiring is REL, the algebra of binary relations under union and composition over a set. Other interesting examples of weak idempotent semirings can be found within the set of endofunctions on an upper semilattice (L, \sqcup, \sqcap) with least element \sqcap, where addition is defined as $(f + g)(x) = f(x) \cup g(x)$ and multiplication by function composition. The set of disjunctive functions (satisfying $f(x \sqcup y) = f(x) \sqcup f(y)$) forms a weak idempotent semiring. The induced natural order is the pointwise order $f \leq g \iff \forall x.f(x) \leq g(x)$. The subclass of strict disjunctive functions (satisfying additionally $f(\sqcap) = \sqcap$) even forms an idempotent semiring. These types of semirings include predicate transformer algebras and are at the centre of von Wright’s algebraic approach [27].

A (weak) test semiring is a pair $(S, \text{test}(S))$, where S is a(weak) idempotent semiring and $\text{test}(S) \subseteq [0, 1]$ is a Boolean subalgebra of the interval $[0, 1]$ of S such that $0, 1 \in \text{test}(S)$ and join and meet in $\text{test}(S)$ coincide with $+$ and \cdot. This definition corresponds to the one in [18]. In REL the tests are partial identity relations (also called monotypes or coreflexives), encoding sets of states. We use a, b, \ldots for general semiring elements and p, q, \ldots for tests. By $\neg p$ we denote the complement of p in $\text{test}(S)$ and set $p \rightarrow q = \neg p + q$. Moreover, we sometimes write $p \land q$ for $p \cdot q$ and $p \lor q$ for $p + q$. We freely use the Boolean laws for tests. An important property is

$$p \cdot a \cdot q \leq 0 \iff a \cdot q \leq \neg p \cdot a .$$

For (\Rightarrow) we note $a \cdot q = (p \neg p) \cdot a \cdot q = p \cdot a \cdot q + \neg p \cdot a \cdot q = \neg p \cdot a \cdot q \leq \neg p \cdot a$ by $q \leq 1$. For (\Leftarrow) we have $a \cdot q \leq \neg p \cdot a \Rightarrow p \cdot a \cdot q \leq p \cdot \neg p \cdot a = 0 \cdot a = 0$.

A (weak) modal semiring is a pair $(S, [])$, where S is a (weak) test semiring and the box $[] : S \rightarrow (\text{test}(S) \rightarrow \text{test}(S))$ satisfies

$$p \leq [a]q \iff p \cdot a \cdot \neg q \leq 0 , \quad [(a \cdot b)]p = [a]([b]p) .$$

The diamond is the de Morgan dual of the box, i.e., $\langle a \rangle p = \neg[a] \neg p$.

The box generalises the notion of the weakest liberal precondition wp to arbitrary weak modal semirings. When a models a transition relation, $[a]p$ models those states from which execution of a is impossible or guaranteed to terminate in a state in set q. In REL one has $(x, x) \in [R]q \Leftrightarrow \forall y : xRx \Rightarrow (y, y) \in q$. In arbitrary weak semirings the box need not exist; for more details see [10].

The box axioms are equivalent to the equational domain axioms of [10]. In fact the domain of element a is $r[a] \overset{\text{def}}{=} \neg[a]0$. Hence $r[a]$ provides an abstract characterisation of the starting states of a. Conversely, $[a]q = \neg r[a \cdot \neg q]$. Most of the consequences of the box axioms shown originally for strict modal semirings in [10] still hold for weak modal semirings (see [20]), in particular,

$$[a](p \cdot q) = [a]p \cdot [a]q , \quad \langle a \rangle (p + q) = [a]p + [a]q , \quad (2)$$

$$[a + b]p = [a]p + [b]p , \quad \langle a + b \rangle p = \langle a \rangle p + \langle b \rangle p , \quad (3)$$

$$[p]q = p \rightarrow q , \quad \langle p \rangle q = p \cdot q . \quad (4)$$