Finding the Position of the k-Mismatch and Approximate Tandem Repeats

Haim Kaplan1, Ely Porat2, and Nira Shafrir1

1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
{haimk, shafrirn}@post.tau.ac.il
2 Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
porately@cs.biu.ac.il

Abstract. Given a pattern P, a text T, and an integer k, we want to find for every position j of T, the index of the k-mismatch of P with the suffix of T starting at position j. We give an algorithm that finds the exact index for each j, and algorithms that approximate it. We use these algorithms to get an efficient solution for an approximate version of the tandem repeats problem with k-mismatches.

1 Introduction

Let P be a pattern of length m and let T be a text of length n. Let $T(i, \ell)$ denote the substring of T of length ℓ starting at position i. In the k-mismatch problem we determine for every $1 \leq j \leq n - m + 1$, if $T(j, m)$ matches P with at most k mismatches. In case $T(j, m)$ does not match P with at most k mismatches we compute the position $k(j)$ in P of the k-mismatch. In case $T(j, m)$ matches P with at most k mismatches we compute the position of the last mismatch if there is at least one mismatch.

Several classical results are related to the k-mismatch problem. Abrahamson [1], gave an algorithm that finds for each $1 \leq j \leq n - m + 1$, the number of mismatches between $T(j, m)$ and P. The running time of Abrahamson’s algorithm is $O(n\sqrt{m \log m})$. Amir et. al. [2], gave an algorithm that for each $1 \leq j \leq n - m + 1$, determines if the number of mismatches between $T(j, m)$ and P is at most k. running time of this algorithm is $O(n\sqrt{k \log k})$. Both of these algorithms do not give any information regarding the position of the last mismatch or the position of the k-mismatch. This information is useful for applications that want to know not only if the pattern matches with at most k-mismatches, but also want to know how long is the prefix of the pattern that matches with at most k-mismatches.

The major technique used by the algorithms of Abrahamson and of Amir et. al. is convolution. Lets fix a particular character $x \in \Sigma$. Suppose we want to compute for every $1 \leq j \leq n - m + 1$, the number of places in which an x in P does not coincide with an x in T when we align P with $T(j, m)$. We can

1 We always assume that $i \leq n - m + 1$ when we use this notation.
perform this task by computing a convolution of a binary vector \(P(x) \) of length \(m \), and a binary vector \(T(x) \) of length \(n \) as follows. The vector \(P(x) \) contains 1 in every position where \(P \) contains the character \(x \) and 0 in all other positions. The vector \(T(x) \) contains 1 in every position where \(T \) does not contain \(x \) and 0 in every position where \(T \) contains \(x \). We can perform the convolution between \(P(x) \) and \(T(x) \) in \(O(n \log m) \) time using the Fast Fourier Transform. So if \(P \) contains only \(|\Sigma| \) different characters we can count for each \(1 \leq j \leq n - m + 1 \), the number of mismatches between \(T(j, m) \) and \(P \) in \(O(|\Sigma|n \log m) \). We do that by performing \(|\Sigma| \) convolutions as described above, one for each character in \(P \), and add up the mismatch counts.

There is a simple deterministic algorithm for the \(k \)-mismatch problem that runs in \(O(nk^{2/3} \log^{1/3} m) \) time and \(O(n) \) space of Landau and Vishkin [8]. They construct a suffix tree for the text and the pattern, with a data structure for lowest common ancestor (LCA) queries, to allow constant-time jumps over equal substrings in the text and pattern. The algorithm of Landau and Vishkin finds for each \(j \) the position of the \(k \)-mismatch (or the last mismatch if there are less than \(k \) mismatches) between \(T(j, m) \) and \(P \) in \(O(k) \) time. It does that by performing at most \(k \) LCA queries on the appropriate substrings of the text and the pattern. We give an alternative algorithm that runs in \(O(nk^{2/3} \log^{1/3} m \log k) \) time and linear space.

To see why the bound of \(O(nk^{2/3} \log^{1/3} m) \), may be natural, consider a pattern of length \(m = O(k) \). In this case, we can solve the problem using the method of Abrahamson [11]. We divide the pattern into \(k^{2/3}/\log^{1/3} k \) blocks, each block of size \(z = O(k^{2/3} \log^{1/3} k) \). By applying the algorithm of Abrahamson with the first block as the pattern, we determine in \(O(n\sqrt{z \log z}) = O(nk^{2/3} \log^{2/3} k) \) time, the number of mismatches of each text location with the first block. Similarly, by applying the method of Abrahamson to each of the subsequent \(k^{2/3}/\log^{1/3} k \) blocks of the pattern, and accumulating the number of mismatches for each text position, we know in \(O(nk^{2/3} \log^{1/3} k) \) time for each text position, which block contains the \(k \)-mismatch. Moreover we also know for each text position the number of mismatches in the blocks preceding the one that contains the \(k \)-mismatch. With this information, we can find for each text position the \(k \)-mismatch in the relevant block in \(O(k^{2/3} \log^{1/3} k) \) time by scanning the block character by character looking for the appropriate mismatch. It is not clear how to get a better bound even for this simple example.

We also define the approximate \(k \)-mismatch problem. This problem have an additional accuracy parameter \(\epsilon \). The task is to determine for every \(1 \leq j \leq n - m + 1 \) a position \(k(j) \) in \(P \) such that the number of mismatches between \(T(j, k(j)) \) and \(P(1, k(j)) \) is at least \((1 - \epsilon)k \) and at most \((1 + \epsilon)k \), or report that there is no such position.

We give a deterministic and randomized algorithms for the approximate \(k \)-mismatch problem. We describe the deterministic algorithm in Section 3. The running time of this algorithm is \(O((n/3)\sqrt{k \log^3 m}) \). In Sect. 4 we give a randomized algorithm with running time of \(O(\frac{n}{\epsilon^2} \log n \log^3 m \log k) \). The randomized algorithm guarantees that for each \(j \) the number of mismatches between