Randomized Wait-Free Consensus Using an Atomicity Assumption

Ling Cheung*

Department of Computer Science, University of Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

Abstract. We present a randomized algorithm for asynchronous wait-free consensus using multi-writer multi-reader shared registers. This algorithm is based on earlier work by Chor, Israeli and Li (CIL) and is correct under the assumption that processes can perform a random choice and a write operation in one atomic step. The expected total work for our algorithm is shown to be $O(N \log(\log N))$, compared with $O(N^2)$ for the CIL algorithm, and $O(N \log N)$ for the best known weak adversary algorithm. We also model check instances of our algorithm using the probabilistic model checking tool PRISM.

Keywords: Asynchronous Consensus, Randomized Algorithms, Wait-Free Termination, Weak Adversary, Probabilistic Model Checking.

1 Introduction

Distributed consensus refers to a class of problems in which a set of parallel processes exchange messages in order to agree on a common preference. Initially, each process is given an input value from a fixed, finite domain and, at the end of the algorithm, each non-faulty process outputs a decision value. Correctness requirements are typically formulated as follows.

- **Validity**: the output of any non-faulty process must have been the input of some process.
- **Agreement**: all non-faulty processes decide on the same value.
- **Termination**: every non-faulty process decides after a finite number of steps.

As shown in [FLP85], there exists no deterministic algorithm that solves distributed consensus in a setting of asynchronous communication with undetected process failure. Nonetheless, many efficient solutions exist under stronger assumptions (e.g. partial synchrony [DLS88] and failure detection [ACT00]) or weaker correctness requirements (e.g. probabilistic termination [CIL87]).

Our algorithm falls into the category of randomized consensus algorithms, where processes may use coin tosses to determine their course of actions. In this

* Supported by DFG/NWO bilateral cooperation project Validation of Stochastic Systems (VOSS2).
setting, termination is weakened to a probabilistic statement: the set of all non-terminating executions has probability 0. We refer to [Asp03] for a comprehensive overview on randomized consensus.

The first randomized consensus algorithm was proposed by Chor, Israeli and Li [CIL87, CIL94]. It satisfies the following termination condition.

– Probabilistic wait-free termination: with probability 1, each non-faulty process decides after a finite number of steps.

We adopt the same requirement. In fact, the logical structure of our algorithm closely resemble that in [CIL94], while we borrow ideas from [Cha96] to reduce the amount of shared and local data. We shall refer to [CIL94] as the original CIL algorithm and our own as the modified CIL algorithm.

Adversary Models and Work Bounds. To prove probabilistic termination, we must reason about probability distributions on the set of executions. These distributions are induced by the so-called adversaries, which are functions from finite histories to available next steps.

The strength of an adversary varies according to the amount of information it can extract from a finite history. The strong adversaries have access to complete history of all processes and shared registers. Some weaker forms, such as write-oblivious and value-oblivious, delay the adversary’s knowledge of outcomes of internal coin tosses. Clearly, a stronger adversary model permits more possibilities and therefore renders consensus more difficult. Consensus against strong adversaries is shown to be $\Omega(N^2/\log^2 N)$ in expected total work, where N is the number of processes participating in the algorithm [Asp98]. The best known algorithms achieve expected $O(N^2 \log N)$ total work [BR91] and $O(N \log^2 N)$ per process [AW96]. Against write-oblivious adversaries, one can achieve expected $O(\log N)$ per process work and $O(N \log N)$ total work [Aum97]. Against value-oblivious adversaries, the fastest algorithm is $O(N \log N e^{\sqrt{\log N}})$ in a single-writer single-reader (SWSR) setting [AKL99].

Our adversary model takes the form of an atomicity assumption: processes can perform a random choice and a write operation in one atomic step. In particular, the process increments its round number if and only if the coin lands heads; then immediately it writes 1 to the memory location $\text{mem}(r, v)$, where r is the round number after the coin toss and v is the current preference. This amounts to saying that the adversary cannot distinguish between the two locations $\text{mem}(r, v)$ and $\text{mem}(r + 1, v)$. The original CIL algorithm relies on a similar atomicity assumption [CIL94] and achieves expected $O(N^2)$ total work [CIL94]. In the present paper, we replace the single-writer multiple-reader (SWMR) registers of [CIL94] with multi-writer multi-reader (MWMR) registers, thereby reducing the expected total work to $O(N \log(\log N))$.

1 This is faster than other value-oblivious algorithms because SWSR is a weak primitive. More discussion can be found in Section 7.

2 The assumption in [CIL94] says that the adversary cannot distinguish between the values r and $r + 1$ as they are written to the same memory location.