A Flexible Framework for Secret Handshakes
(Multi-party Anonymous and Un-observable Authentication)

Gene Tsudik1 and Shouhuai Xu2

1 Department of Computer Science, University of California, Irvine
gts@ics.uci.edu
2 Department of Computer Science, University of Texas, San Antonio
shxu@cs.utsa.edu

Abstract. In the society increasingly concerned with the erosion of privacy, privacy-preserving techniques are becoming very important. This motivates research in cryptographic techniques offering built-in privacy. A secret handshake is a protocol whereby participants establish a secure, anonymous and unobservable communication channel only if they are members of the same group. This type of “private” authentication is a valuable tool in the arsenal of privacy-preserving cryptographic techniques. Prior research focused on 2-party secret handshakes with one-time credentials.

This paper breaks new ground on two accounts: (1) it shows how to obtain secure and efficient secret handshakes with reusable credentials, and (2) it represents the first treatment of group (or multi-party) secret handshakes, thus providing a natural extension to the secret handshake technology. An interesting new issue encountered in multi-party secret handshakes is the need to ensure that all parties are indeed distinct. (This is a real challenge since the parties cannot expose their identities.) We tackle this and other challenging issues in constructing GCD – a flexible framework for secret handshakes. The proposed GCD framework lends itself to many practical instantiations and offers several novel and appealing features such as self-distinction and strong anonymity with reusable credentials. In addition to describing the motivation and step-by-step construction of the framework, this paper provides a thorough security analysis and illustrates two concrete framework instantiations.

Keywords: secret handshakes, privacy-preservation, anonymity, credential systems, unobservability, key management.

1 Introduction

Much of today’s communication is conducted over public networks which naturally prompts a number of concerns about security and privacy. Communication security has been studied extensively and a number of effective and efficient security tools and techniques are available.

Unfortunately, privacy concerns have not been addressed to the same extent. Yet, it is quite obvious to anyone who keeps up with the news that our society is very concerned with privacy. At the same time, privacy is being eroded...
by (often legitimate) concerns about crime, terrorism and other malfeasances. Furthermore, the proliferation of wireless communication (among laptops, cell phones, PDAs, sensors and RFIDs) drastically lowers the bar for eavesdropping and tracking of both people and their devices.

Popular techniques to provide communication privacy include email MIX-es, anonymizing routers and proxy web servers as well as purely cryptographic tools, such as private information retrieval. Despite important advances, the privacy continuum has not been fully explored. One particular issue that has not been widely recognized is the need for unobservable, untraceable and anonymous authentication, i.e., **privacy-preserving authentication**. Such a notion might seem counter-intuitive at first, since authentication traditionally goes hand-in-hand with identification. However, in the context of groups or roles, authentication identifies not a distinct entity but a collection thereof. To this end, some advanced cryptographic techniques have been developed, such as group signatures [1] and privacy-preserving trust negotiation [9,25].

We focus on **interactive privacy-preserving mutual authentication**; more specifically, on **secret handshakes**. A secret handshake scheme (SHS) allows two or more group members to authenticate each other in an anonymous, unlinkable and unobservable manner such that one’s membership is not revealed unless every other party’s membership is also ensured.

In more detail, a secure handshake allows members of the same group to identify each other **secretly**, such that each party reveals its affiliation to others if and only if the latter are also group members. For example, in a 2-party setting, an FBI agent (Alice) wants to authenticate to Bob only if Bob is also an FBI agent. Moreover, if Bob is not an FBI agent, he should be unable to determine whether Alice is one (and vice versa). This property can be further extended to ensure that group members’ affiliations are revealed only to members who hold specific roles in the group. For example, Alice might want to authenticate herself as an agent with a certain clearance level only if Bob is also an agent with at least the same clearance level.

In a more general sense, secret handshakes offer a means for privacy-preserving mutual authentication with many possible applications, especially, in hostile environments.

Goals: We set out to develop techniques for supporting efficient **multi-party** secret handshakes while avoiding certain drawbacks present in some or all of the previous **2-party** secret handshake solutions. These drawbacks include: (1) use of one-time credentials or pseudonyms, (2) ability of the group authority to cheat users, (3) requirement to maintain information about many irrelevant groups (groups that one is not a member of), and (4) lack of support for handshakes of three or more parties. Some of these drawbacks are self-explanatory, while others are clarified later in the paper.

1. This informal definition broadens the prior version [3] which limited secret handshakes to two parties.