Molecular Mechanisms of Dielectrically Controlled Resolution (DCR)

Kenichi Sakai¹,² · Rumiko Sakurai¹,³ · Noriaki Hiyama⁴

¹R&D Division, Yamakawa Chemical Industry Co. Ltd., Kitaibaraki, 319-1541 Ibaraki, Japan
²Present address:
Specialty Chemicals Research Laboratory, Toray Fine Chemicals Co. Ltd., Minatoku, 455-8502 Nagoya, Japan
³Present address:
Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, 259-1193 Kanagawa, Japan
⁴Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, 259-1193 Kanagawa, Japan

hirayama@is.icc.u-tokai.ac.jp

1 Introduction ... 234
2 (RS)-α-amino-ε-Caprolactam: N-tosyl-(S)-Phenylalanine System 235
 2.1 X-ray Analysis of the Diastereomeric Salts 236
 2.2 Molecular Structures .. 237
 2.3 Crystal Structures .. 240
 2.4 Molecular Recognition .. 243
3 (RS)-2-Methylpyrrolidine: (R,R)-Tartaric Acid System 245
 3.1 X-ray Analysis of the Diastereomeric Salts 246
 3.2 Molecular Structures .. 248
 3.3 Crystal Structures .. 249
 3.4 Molecular Recognition .. 252
4 (RS)-Phenyl-2-p-Tolyl Ethylamine: (S)-Mandelic Acid System 254
 4.1 X-ray Analysis of the Diastereomeric Salts 255
 4.2 Molecular and Crystal Structures 255
 4.3 Molecular Recognition .. 260
5 (RS)-Cyclohexylethylamine: (S)-Mandelic Acid System 261
 5.1 X-ray Analysis of the Diastereomeric Salts 261
 5.2 Molecular and Crystal Structures 262
 5.3 Molecular Recognition .. 268
6 Molecular Mechanism of DCR .. 268
7 Conclusions and Scope .. 270
References ... 271
Abstract It is widely believed that the chiral discrimination process is solely dependent on the stereochemistry of the relevant molecules. However, through systematic studies on several resolution systems with popular chiral selectors, we have discovered a new fact that triggers modification of this prevailing concept of chiral resolution. The studies have demonstrated that one enantiomer of a chiral selector can recognize both enantiomers of a target molecule in different solvent systems with different dielectric constants. The phenomenon was termed dielectrically controlled resolution (DCR). Since DCR was observed in different resolution systems and was not too specific to a particular system, DCR was expected to widely occur in various resolution systems. We have investigated the molecular mechanism underlying this interesting phenomenon based on X-ray analysis of the relevant diastereomeric salts. The disclosed mechanism clearly indicates that a chiral selector can inherently recognize both enantiomers of a target molecule and only the dielectric property of the solvent employed in the resolution process governs the selection of the enantiomer.

Keywords Chiral resolution · Dielectrically controlled resolution · Molecular recognition · Solvent effect · X-ray crystallography

Abbreviations
ACL α-amino-ε-caprolactam
TPA N-tosyl-phenylalanine
MPRD 2-methylpyrrolidine
TA tartaric acid
PTE phenyl-2-p-tolyl ethylamine
MA mandelic acid
CHEA cyclohexylethylamine

1 Introduction

Diastereomeric salt formation using a resolving agent as a chiral selector is one of the most useful methods for obtaining a target stereoisomer from its racemic mixture [1]. It is widely believed that the chiral discrimination process is solely dependent on the stereochemistry of the relevant molecules. The conventional idea of chiral separation takes it for granted that where a chiral selector of molecule (R)-A is necessary to obtain a less soluble diastereomeric salt with a target molecule of (R)-B, (S)-A is absolutely necessary to separate the enantiomer of the molecule B.

No special attention has been given to the effect of the solvent on the process of discrimination. The role of the solvent is obviously to dissolve both the chiral selector and target molecule, but it is highly probable that the properties of the media influence molecular recognition more than a little. Therefore, we have undertaken a series of experiments to study the effects of solvent on chiral resolution, which is a typical phenomenon of molecular recognition.