Quantum Chemical Investigations of Reaction Paths of Metalloenzymes and Biomimetic Models – The Hydrogenase Example

Luca Bertini1 · Maurizio Bruschi2 · Luca de Gioia1 (✉) · Piercarlo Fantucci1 · Claudio Greco1 · Giuseppe Zampella1

1 Department of Biotechnology and Biosciences, Universita’ degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
Luca.degioia@unimib.it
2 Department of Environmental Sciences, Universita’ degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy

Abstract Quantum chemical methods allow one to investigate chemical aspects that are often difficult to evaluate using only experimental approaches. In particular, the continuous increase in reliability and speed of quantum chemical methods has recently allowed...
the investigation of very complex molecular systems, such as biological macromolecules. In this contribution, we present applications of quantum chemical methods to the investigation of reaction paths of metalloenzymes and related biomimetic models, using hydrogenase models as a reference case. In particular, we discuss several examples from the literature, emphasizing the possibilities (and limitations) offered by present theoretical approaches to study structures, electronic properties and reactivity of metalloenzyme models. Some relevant aspects which have not yet been fully explored using theoretical methods, such as the role of antiferromagnetic coupling and photochemical reactions in [Fe] hydrogenases, are treated in more detail, with presentation and discussion of original data recently obtained in our laboratory.

Keywords Coordination compounds · DFT · Hydrogenases · Metalloenzymes · Quantum chemistry

Abbreviations

B3LYP Becke3-Lee-Yang-Parr DFT functional
BP86 Becke-Perdew 1986 DFT functional
CI Configuration interaction
CIS Configuration interaction singles
DFT Density functional theory
dppe 1,2-bis(diphenylphosphino)ethane
DTMA Di(thiomethyl)amine
EDT 1,2 Ethanedithiolate
EPR Electron paramagnetic resonance
Feₚ Iron atom of the binuclear cluster proximal to the [Fe₄S₄] cluster in [Fe] hydrogenases
Fe₄ Iron atom of the binuclear cluster distal to the [Fe₄S₄] cluster in [Fe] hydrogenases
G2 Gaussian-2 molecules set
GGA Generalized gradient approximation
HF Hartree–Fock
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
KS Kohn–Sham
LDA Local density approximation
MP2 Möller–Plesset second order perturbation method
MOs Molecular orbitals
CT Charge transfer
o-xyldt Orto-xylenedithiolate
PBE Perdew–Burke–Ernzerhof DFT functional
PDT 1,3-Propanedithiolate
RI Resolution of identity
TDA Tamm–Dancoff approximation
TDDFT Time-Dependent density functional theory
TDHF Time-dependent Hartree–Fock
TZVP A triple-zeta basis set
VWN Vosko–Wilk–Nusair DFT functional
ZORA Zero-order regular approximation
BS Broken symmetry