Several years ago, a group at the Weizmann Institute1 had shown that it was possible to measure detailed information on some nuclear wave functions by the study of pp'\gamma angular correlations via analogue resonances. Encouraged by the success of the method a new project had been started2. The aim was the study of

![Proton coincidence spectrum on the 5/2+ g.s. analogue resonance](image)

Fig. 1. Proton coincidence spectrum on the 5/2+ g.s. analogue resonance
nuclear wave functions of low lying states in the mass 90 region. The motivation for this work, some experimental results and discussion of the interpretation difficulties will be reported here together with some preliminary results of analyses and its implications.

The motivation for this work can be illustrated with the aid of figure 1. A proton spectrum in coincidence with $2^+ \rightarrow 0^+$ gamma rays from the 94Mo(p,p'γ) reaction is shown. The incoming proton energy is adjusted to excite the analogue resonance of the $5/2^+$ ground state of 95Mo. The 2^+, 4^+, 2^+ and (4^+) first excited

![Excitation functions of the ppγ angular correlation through the 2+(.871 MeV) state of 94Mo, in the vicinity of the 5/2+ g.s. analogue](image)

Fig. 2. Excitation functions of the ppγ angular correlation through the 2^+(.871 MeV) state of 94Mo, in the vicinity of the $5/2^+$ g.s. analogue