A partially ordered set \(T = (T, <) \) is an \(\omega \) - tree, if for each \(x \in T \), the set \(\hat{x} = \{ y : y \in T \land y < x \} \) is linearly ordered by \(< \) and finite. A subset \(X \) of \(T \) is said to be bounded if there exists a natural number \(n \) such that for each \(x \in X \), the set \(\hat{x} \) has at most \(n \) elements. Let \(P_{b1}(T) \) be the set \(\{ X : \text{card}(X) \leq n \land X \text{ is a bounded subset of } T \} \). We take a monadic second-order language \(L \) with one binary relational symbol \(< \) and define the monadic second-order theory of \(T \), denoted by \(\text{Th}_2(T) \), by:

\[
\text{Th}_2(T) = \{ \phi : \phi \text{ is a sentence of } L \land T \vDash \phi \}
\]

We get the weak monadic second-order theory of \(T \), denoted by \(\text{Th}_2^f(T) \), if we restrict the interpretation of the set variables to finite sets only. Similar we define \(\text{Th}_2^b(T) \) (\(\text{Th}_2^{b1}(T) \) respectively) restricting the interpretation of the set variables to bounded sets (elements of \(P_{b1}(T) \) respectively) only. The elementary theory of \(T \) we shall denote by \(\text{Th}(T) \). Let \(K \) ba the class of all \(\omega \) - trees. \(\text{Th}_2(K) \) is defined to be

\[
\bigcap_{T \in K} \text{Th}_2(T).
\]
In a similar way we define $\text{Th}_{2f}(K)$, $\text{Th}_{2b}(K)$, $\text{Th}_{2b1}(K)$ and $\text{Th}(K)$.

Rabin [6] proved that the monadic second-order theory of two successor functions is decidable. From this result he got the decidability of $\text{Th}_2(K')$ and the decidability of $\text{Th}_{2f}(K)$ by a simple interpretability argument (see [6,11]). Here K' is the class of all countable ω-trees.

The following definition we take from [10].

For a model M with relations only, let $M^\#$ be the following model:

(i) its universe is the set of finite sequences of elements of M;
(ii) its relations are

(a) \prec, where $\bar{a} \prec \bar{b}$ means \bar{a} is an initial segment of \bar{b},
(b) for each n-place predicate R from the language of M,

$$R_{M^\#} = \{(a_1, \ldots , a_{m-1}, b^1), \ldots , (a_1, \ldots , a_{m-1}, b^n) : a_i, b^i \text{ are elements of } M, M \models R(b^1, \ldots , b^n)\}.$$

In [10] is given the following result.

Theorem 1 (Shelah, Stup). $\text{Th}_2(M^\#)$ is recursive in $\text{Th}_2(M)$.

This result is proved by Shelah and Stup (see [10]) using a generalization of Rabin's automaton from [6]. It implies immediately the decidability of $\text{Th}_2(K)$ (see [10,11]).

The problem of the decidability of $\text{Th}_{2b}(K)$ is raised by Ziegler. He asks whether the theory of uniform Hausdorff-spaces in the language L_u is decidable (see also [4]) and proves the following result, which connects both problems.