A THEORETICAL STUDY ON THE TIME ANALYSIS OF PROGRAMS

Akeo Adachi
Department of Academic and Scientific Programs, IBM Japan
Roppongi, Minato-ku, Tokyo, 106 Japan

Takumi Kasai
IBM Thomas J. Watson Research Center, P.O. Box 218
Yorktown Heights, N.Y. 10598, U.S.A.

Etsuro Moriya
Department of Mathematics, Tokyo Woman's Christian University
Zenpukuji, Suginami-ku, Tokyo, 167 Japan

0. Introduction

Meyer and Ritchie [1][2] introduced the notion of loop programs and classified the primitive recursive functions syntactically with the help of loop programs into the hierarchy $L_0 < L_1 < L_2 < \ldots$ by restricting the depth of loop nesting, i.e., L_n is the class of functions computed by loop programs whose depth of loop nesting is not greater than n. They also showed that each class L_n can be characterized by computational complexity, measured by the amount of time required on loop programs to compute the functions. In particular, a function is elementary in the sense of Kalmár [3], i.e., belongs to L_2, if and only if it can be computed by a loop program whose computing time is bounded by a k-fold exponential function of its inputs for some k, while there is general agreement that those computations which are exponentially difficult in time are practically intractable. In this respect, many people feel that even the class L_2 is still too inclusive in the sense of "practical computation".

In the earlier paper [4] the authors attempted an investigation to obtain a substantial subclass of L_2 reflecting practical computation, where the notion of loop programs is extended so as to include additional types of primitive statements such as $x \leftarrow x^2$ and IF-THEN-ELSE, and the use of arrays is allowed as well. It is proved that if such an extended loop program satisfies a certain syntactical restriction called "simplesness", then the computing time of the program is bounded by a polynomial of its inputs whose degree can be effectively determined only by the depth of loop nesting. This is worthy of notice, since it says that we can know syntactically a practical estimation of the time required to execute a
given "simple loop program" before execution.

Here in this paper, on the basis of our earlier work [4], we make a rather precise analysis of time complexity of simple loop programs. We present an algorithm which gives an accurate upper bound of the computing time of any given simple loop program; a slight modification of the algorithm gives a lower bound.

1. Simple Loop Programs

First we review a basic result from Kasai & Adachi [4], being the starting point of our investigation.

Definition. Let C, S and A be fixed mutually disjoint countable sets of symbols. An element of C, S or A is called a control variable, simple variable or array name, respectively. Let Var denote the set of all variables, that is,

$$\text{Var} = C \cup S \cup \left\{ a[i] \mid a \in A, i \in N \right\},$$

where $N = \{0, 1, 2, \ldots\}$. A loop program is a statement over Var defined recursively as follows, where $\overline{A} = \{ a[i] \mid a \in A, i \in \text{OUS} \}$,

\begin{align*}
<\text{atomic statement}> & := u \rightarrow u+1 \mid v \rightarrow v+1 \mid v \rightarrow u \mid u \rightarrow c \\
<\text{loop statement}> & := \text{LOOP } x \text{ DO } \langle \text{statement} \rangle \text{ END} \\
<\text{condition}> & := w_1 = w_2 \mid w_1 \neq w_2 \\
<\text{statement}> & := <\text{atomic statement}> \mid \langle \text{loop statement} \rangle \mid \langle \text{condition} \rangle \langle \text{statement} \rangle \langle \text{statement} \rangle \\
\end{align*}

Definition. A function $d: \text{Var} \rightarrow \mathbb{N}$ is called a memory. We denote the set of memories by D. Let P be a loop program, then P realizes the partial function $\hat{P}: D \rightarrow \mathbb{N}$. The time complexity of P is the function $\text{time}_P: D \rightarrow \mathbb{N}$ such that $\text{time}_P(d)$ is the number of atomic statements executed by P under an initial memory d. The definition of \hat{P} and time_P is straightforward so that we omit the details.

Definition. For each loop program P, we define the relation $>_P$ on C_P as follows, where C_P denotes the set of control variables appearing in P.

We write $x >_P y$ if and only if the program P includes a statement of the form $\text{LOOP } x \text{ DO } Q \text{ END}$, and Q includes $y \rightarrow y+1$.

We say that P is simple if there is no sequence of control variables x_1, x_2, \ldots, x_k, $k > 1$, such that