Estimating a Probability Using Finite Memory *

Extended Abstract

Frank Thomson Leighton and Ronald L. Rivest
Mathematics Department and Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge, Mass. 02139

Abstract: Let \(\{ i \} \) be a sequence of independent Bernoulli random variables with probability \(p \) that \(X_i = 1 \) and probability \(q = 1 - p \) that \(X_i = 0 \) for all \(i \geq 1 \). We consider time-invariant finite-memory (i.e., finite-state) estimation procedures for the parameter \(p \) which take \(X_1, \ldots \) as an input sequence. In particular, we describe an \(n \)-state deterministic estimation procedure that can estimate \(p \) with mean-square error \(O(\frac{\log n}{n}) \) and an \(n \)-state probabilistic estimation procedure that can estimate \(p \) with mean-square error \(O(\frac{1}{n}) \). We prove that the \(O(\frac{1}{n}) \) bound is optimal up to within a constant factor. In addition, we show that linear estimation procedures are just as powerful (up to the measure of mean-square error) as arbitrary estimation procedures. The proofs are based on the Markov Chain Tree Theorem.

1. Introduction

Let \(\{ X_i \} \) be a sequence of independent Bernoulli random variables with probability \(p \) that \(X_i = 1 \) and probability \(q = 1 - p \) that \(X_i = 0 \) for all \(i \geq 1 \). Estimating the value of \(p \) is a classical problem in statistics. In general, an estimation procedure for \(p \) consists of a sequence of estimates \(\{ e_t \} \) where each \(e_t \) is a function of \(\{ X_i \} \). When the form of the estimation procedure is unrestricted, it is well-known that \(p \) is best estimated by

\[
e_t = \frac{1}{t} \sum_{i=1}^{t} X_i.
\]

As an example, consider the problem of estimating the probability \(p \) that a coin of unknown bias will come up "heads". The optimal estimation procedure will, on the \(t \)th trial, flip the coin to determine \(X_t \) (\(X_t = 1 \) for "heads" and \(X_t = 0 \) for "tails") and then estimate the proportion of heads observed in the first \(t \) trials.

The quality of an estimation procedure may be measured by its mean-square error \(\sigma^2(p) \). The mean-square error of an estimation procedure is defined as

\[
\sigma^2(p) = \lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \sigma_i^2(p),
\]

where

\[
\sigma_i^2(p) = E((e_i - p)^2)
\]

denotes the expected square error of the \(i \)th estimate. For example, it is well-known that \(\sigma_i^2(p) = \frac{pq}{t} \) and \(\sigma^2(p) = 0 \) when \(e_i = \frac{1}{t} \sum_{i=1}^{t} X_i \).

* This research was supported by the Bantrell Foundation and by NSF grant MCS-8006938.
In this paper, we consider time-invariant estimation procedures which are restricted to use a finite amount of memory. A *time-invariant finite-memory estimation procedure* consists of a finite number of states \(S = \{1, \ldots, n\} \), a start state \(S_0 \in \{1, \ldots, n\} \), and a transition function \(\tau \) which computes the state \(S_t \) at step \(t \) from the state \(S_{t-1} \) at step \(t-1 \) and the input \(X_t \) according to

\[
S_t = \tau(S_{t-1}, X_t).
\]

In addition, each state \(i \) is associated with an estimate \(\eta_i \) of \(p \). The estimate after the \(t \)th transition is then given by \(e_t = \eta_{S_t} \). For simplicity, we will call a finite-state estimation procedure an "FSE".

As an example, consider the FSE shown in Figure 1. This FSE has \(n = \frac{(s+1)(s+2)}{2} \) states and simulates two counters: one for the number of inputs seen, and one for the number of inputs seen that are ones. Because of the finite-state restriction, the counters can count up to \(s = \Theta(\sqrt{n}) \) but not beyond. Hence, all inputs after the \(s \)th input are ignored. On the \(t \)th step, the FSE estimates the proportion of ones seen in the first \(\min(s, t) \) inputs. This is

\[
e_t = \frac{1}{\min(s, t)} \sum_{i=1}^{\min(s, t)} X_i.
\]

Hence the mean-square error of the FSE is \(\sigma^2(p) = \frac{pq}{s} = O\left(\frac{1}{\sqrt{n}}\right) \).

Figure 1: An \(\frac{(s+1)(s+2)}{2} \)-state deterministic FSE with mean-square error \(\sigma^2(p) = \frac{pq}{s} \). States are represented by circles. Arrows labeled with \(q \) denote transitions on input zero. Arrows labeled with \(p \) denote transitions on input one. Estimates are given as fractions and represent the proportion of inputs seen that are ones.