Abstract

We present a method for validating abstract data type specifications. The method takes as input a set of ground terms \(L_0 \) and a set of conditional equations \(A_0 \) over \(L_0 \). The object of this method is to find a normal form function, \(\text{Norm} \), for the pair \(< L_0, A_0 > \). The function \(\text{Norm} \) is computed as a sequence of step functions \(S_1, S_2, ..., S_n \).

Each step function \(S_i \), \(0 \leq i \leq n \), takes as input a pair \(< L_{i-1}, A_{i-1} > \), where \(L_{i-1} \) is a set of ground terms and \(A_i \) is a set of conditional equations over the set of terms \(L_{i-1} \). At each step \(i \), a set of equations \(E_i \) is selected from the set of theorems of the pair \(< L_{i-1}, A_{i-1} > \). The set of equations \(E_i \) is transformed into a set of reductions \(R_i \). The step function \(S_i \) is defined as the top-down reduction extension of \(R_i \) to \(L_{i-1} \). The output of \(S_i \) is the pair \(< L_i, A_i > \), where \(L_i \) is the set of normal forms of \(L_{i-1} \) under the set of reductions \(R_i \) and \(A_i \) is the set of normal forms of the equations in \(A_{i-1} \) under the same set of reductions. This way, a theorem in the system \(< L_{i-1}, A_{i-1} > \) becomes a theorem in the system \(< L_i, A_i > \). The last step, \(S_n \), has as output the pair \(< L_n, \phi > \). The only theorems in \(< L_n, \phi > \) are the identities. This way the sequence \(< L_0, A_0 > \rightarrow S_1 \rightarrow S_2 \rightarrow ... \rightarrow S_{n-1} \) \(A_{n-1} > \rightarrow S_n \rightarrow < A_n, \phi > \) gives us a procedure to compute the normal form of the terms in \(< L_0, A_0 > \).

In this paper we present criteria for choosing the sets of equations \(E_i \) which simplify the pair \(< L_{i-1}, A_{i-1} > \). We also present results that characterize the output set \(< L_i, A_i > \) of \(S_i \) as a function of the set \(< L_{i-1}, A_{i-1} > \) and of the set of reductions \(R_i \). If the sets of reductions \(R_i \) are confluent and terminating, then they can be combined, by using a priority system similar to the one developed by Baeten, Bergstra and Klop, to form a confluent and terminating set of reductions on the set \(< L_0, A_0 > \).

1. Preliminaries

The purpose of this research is to define a method for validating specifications of abstract data types. We use initial algebra semantics as models for our abstract data types ([2],[3]). An initial algebra is the quotient of a free algebra under a set of conditional equations. The free algebra is obtained from a set of operators \(F \). Each operator in \(F \) has a fixed arity; we define the arity to be a function from the set of operators \(F \) to the set \(S^+ \), where \(S \) is the set of sorts. The set \(S^+ \) contains all the nonempty strings over \(S \). If \(w_1w_2...w_n\epsilon S^+ \) is an arity, we write it as \(w_1...w_{n-1} \rightarrow w_n \). The operators which have arity \(s \) are called constants of sort \(s \); we shall call an operator which is not a constant a constructor. The free algebra generated by \(F \) is obtained in the usual way, by starting with constants and repeatedly applying constructors to obtain new terms. We use \(T(F)_s \) to denote the set of terms of sort \(s \) generated by the set of operators \(F \); \(T(F) \) denotes the union of the sets \(T(F)_s \). The elements of \(T(F) \) are called ground terms.
Let X be an S-sorted set. The set X is disjoint from F and each element x in X has arity $\rightarrow s$, s being an element in S. We call x a variable of sort s. We choose X large enough to include a denumerable set of variables for each sort. We can add the set of variables X to the set of operators F and form the free algebra $T(F, X)$ corresponding to the set of operators $X \cup F$. $T(F, X)$ is the set of terms with variables.

The notions of occurrence and subterm are assumed to be known; they can be found in Huet and Oppen ([5]). We use the notation $Var(t)$ to denote the set of variables in the term $t \in T(F, X)$. An equation in $T(F, X)$ is a pair $< M, N >$, where M and N are terms in $T(F, X)_s$, for some sort $s \in S$. We write it $M = N$; we call it a pure equation. We use the notation $Var(M = N)$ for $Var(M) \cup Var(N)$. A conditional equation in $T(F, X)$ is an implication $e_1, e_2, \ldots, e_n \implies e$, where e_1, e_2, \ldots, e_n, e are pure equations in $T(F, X)$.

A substitution is an S-sorted map $s : X \rightarrow T(F, X)$ in which $s(x) \neq x$ for finitely many variables x. The set of variables x for which $s(x) \neq x$ is called the domain of the substitution s. The substitution s can be extended to a map $\bar{s} : T(F, X) \rightarrow T(F, X)$ by specifying that: $\bar{s}(t) = t$ if t is constant, $\bar{s}(t) = s(t)$ if t is a variable and $\bar{s}(f(t_1, \ldots, t_n)) = f(\bar{s}(t_1), \ldots, \bar{s}(t_n))$ for terms of the form $f(t_1, t_2, \ldots, t_n)$. The term $\bar{s}(t)$ is called an instance of t. If s is a substitution with domain $Var(M = N)$ and range L, where L is a subset of $T(F, X)$, the equation $\bar{s}(M) = \bar{s}(N)$ is called an instance of the equation $M = N$ over the set L; if $L = T(F, X)$ we simply call it an instance of $M = N$. In a similar way we define the notion of instance of a conditional equation. A ground substitution is a substitution that has $T(F)$ as its range. We will assume that the the sets of ground terms $T(F)_s$ are not empty; this condition is useful in defining the quotient algebras. We will work with subsets of $T(F)$.

Definition 1.1
1. A subset L of $T(F)$ is stable if for all sorts s, L_s, the set of subterms of sort s, is not empty.
2. Let t be a term in $T(F, X)$, V be the set of variables occurring in t, and L be a stable subset of $T(F)$. We say that L is closed under t if for all ground substitutions s with domain V and range L, $s(t)$ is also a member of L.
3. We say that L is closed under a pure equation $M = N$ if L is closed under M and L is closed under N.
4. We say that L is closed under a conditional equation $e_1, e_2, \ldots, e_n \implies e$ if L is closed under all the equations e_1, e_2, \ldots, e_n, e.
5. We say that L is closed under a set of equations if L is closed under each equation in the set.

For example the set $\{a, f(a), \ldots, f^n(a), \ldots\}$ is closed under the equation $f(f(x)) = x$, since it is closed under the set $\{f(f(x)), x\}$. The notation $f^n(a)$ stands for $f(\ldots f(a)\ldots)$, where the constructor f occurs n times.

Further on we will assume that all sets L are stable.

Definition 1.2
1. Let L be a subset of $T(F)$ and t a term in $T(F, X)$. We say that t has the subterm property for L, if for all instances t', of t over L, the following property holds: if t' is in L then all its subterms are in L.
2. We say that L is full for a set of terms if each term in the set has the subterm property for L.