Computing With Conditional Rewrite Rules

Alex Pelin
School of Computer Science
Florida International University
University Park, Miami
Florida 33199, U.S.A.

Abstract

We present a method for validating abstract data type specifications. The method takes as input a set of ground terms L_0 and a set of conditional equations A_0 over L_0. The object of this method is to find a normal form function, Norm, for the pair $<L_0,A_0>$. The function Norm is computed as a sequence of step functions $S_1, S_2, ..., S_n$.

Each step function S_i, $0 \leq i \leq n$, takes as input a pair $<L_{i-1},A_{i-1}>$, where L_{i-1} is a set of ground terms and A_i is a set of conditional equations over the set of terms L_{i-1}. At each step i, a set of equations E_i is selected from the set of theorems of the pair $<L_{i-1},A_{i-1}>$. The set of equations E_i is transformed into a set of reductions R_i. The step function S_i is defined as the top-down reduction extension of R_i to L_{i-1}. The output of S_i is the pair $<L_i,A_i>$, where L_i is the set of normal forms of L_{i-1} under the set of reductions R_i and A_i is the set of normal forms of the equations in A_{i-1} under the same set of reductions. This way, a theorem in the system $<L_{i-1},A_{i-1}>$ becomes a theorem in the system $<L_i,A_i>$. The last step, S_n, has as output the pair $<L_n,\phi>$. The only theorems in $<L_n,\phi>$ are the identities. This way the sequence $<L_0,A_0>$, $<L_1,A_1>$, ..., $<L_{n-1},A_{n-1}>$, $<A_n,\phi>$ gives us a procedure to compute the normal form of the terms in $<L_0,A_0>$.

In this paper we present criteria for choosing the sets of equations E_i which simplify the pair $<L_{i-1},A_{i-1}>$. We also present results that characterize the output set $<L_i,A_i>$ of S_i as a function of the set $<L_{i-1},A_{i-1}>$ and of the set of reductions R_i. If the sets of reductions R_i are confluent and terminating, then they can be combined, by using a priority system similar to the one developed by Baeten, Bergstra and Klop, to form a confluent and terminating set of reductions on the set $<L_0,A_0>$.

1. Preliminaries

The purpose of this research is to define a method for validating specifications of abstract data types. We use initial algebra semantics as models for our abstract data types ([2],[3]). An initial algebra is the quotient of a free algebra under a set of conditional equations. The free algebra is obtained from a set of operators F. Each operator in F has a fixed arity; we define the arity to be a function from the set of operators F to the set S^+, where S is the set of sorts. The set S^+ contains all the nonempty strings over S. If $w_1w_2...w_n\in S^+$ is an arity, we write it as $w_1...w_{n-1} \rightarrow w_n$. The operators which have arity $\rightarrow s$ are called constants of sort s; we shall call an operator which is not a constant a constructor. The free algebra generated by F is obtained in the usual way, by starting with constants and repeatedly applying constructors to obtain new terms. We use $T(F)_s$ to denote the set of terms of sort s generated by the set of operators F; $T(F)$ denotes the union of the sets $T(F)_s$. The elements of $T(F)$ are called ground terms.
Let X be an S-sorted set. The set X is disjoint from F and each element x in X has arity $\to s$, s being an element in S. We call x a variable of sort s. We choose X large enough to include a denumerable set of variables for each sort. We can add the set of variables X to the set of operators F and form the free algebra $T(F, X)$ corresponding to the set of operators $X \cup F$. $T(F, X)$ is the set of terms with variables.

The notions of occurrence and subterm are assumed to be known; they can be found in Huet and Oppen ([5]). We use the notation $Var(t)$ to denote the set of variables in the term $t \in T(F, X)$. An equation in $T(F, X)$ is a pair $< M, N >$, where M and N are terms in $T(F, X)_s$, for some sort $s \in S$. We write it $M = N$; we call it a pure equation. We use the notation $Var(M = N)$ for $Var(M) \cup Var(N)$. A conditional equation in $T(F, X)$ is an implication $e_1, e_2, ..., e_n \implies e$, where $e_1, e_2, ..., e_n, e$ are pure equations in $T(F, X)$.

A substitution is an S-sorted map $s : X \to T(F, X)$ in which $s(x) \neq x$ for finitely many variables x. The set of variables x for which $s(x) \neq x$ is called the domain of the substitution s. The substitution s can be extended to a map $\bar{s} : T(F, X) \to T(F, X)$ by specifying that: $\bar{s}(t) = t$ if t is constant, $\bar{s}(t) = s(t)$ if t is a variable and $\bar{s}(f(t_1, ..., t_n)) = f(\bar{s}(t_1), ..., \bar{s}(t_n))$ for terms of the form $f(t_1, t_2, ..., t_n)$. The term $\bar{s}(t)$ is called an instance of t. If s is a substitution with domain $Var(M = N)$ and range L, where L is a subset of $T(F, X)$, the equation $\bar{s}(M) = \bar{s}(N)$ is called an instance of the equation $M = N$ over the set L; if $L = T(F, X)$ we simply call it an instance of $M = N$. In a similar way we define the notion of instance of a conditional equation. A ground substitution is a substitution that has $T(F)$ as its range. We will assume that the the sets of ground terms $T(F)_s$ are not empty; this condition is useful in defining the quotient algebras. We will work with subsets of $T(F)$.

Definition 1.1
1. A subset L of $T(F)$ is stable if for all sorts s, L_s, the set of subterms of sort s, is not empty.
2. Let t be a term in $T(F, X)$, V be the set of variables occurring in t, and L be a stable subset of $T(F)$. We say that L is closed under t if for all ground substitutions s with domain V and range L, $s(t)$ is also a member of L.
3. We say that L is closed under a pure equation $M = N$ if L is closed under M and L is closed under N.
4. We say that L is closed under a conditional equation $e_1, e_2, ..., e_n \implies e$ if L is closed under all the equations $e_1, e_2, ..., e_n, e$.
5. We say that L is closed under a set of equations if L is closed under each equation in the set.

For example the set \{a, f(a), ..., f^n(a), ...\} is closed under the equation $f(f(x)) = x$, since it is closed under the set \{f(f(x)), x\}. The notation $f^n(a)$ stands for $f(f(...f(a)...))$, where the constructor f occurs n times.

Further on we will assume that all sets L are stable.

Definition 1.2
1. Let L be a subset of $T(F)$ and t a term in $T(F, X)$. We say that t has the subterm property for L, if for all instances t', of t over L, the following property holds: if t' is in L then all its subterms are in L.
2. We say that L is full for a set of terms if each term in the set has the subterm property for L.