Nanoscale Boundary Lubrication Studies

Bharat Bhushan and Huiwen Liu

Summary. Boundary films are formed by physisorption, chemisorption, and chemical reaction. With physisorption, no exchange of electrons takes place between the molecules of the adsorbate and those of the adsorbant. The physisorption process typically involves van der Waals forces, which are relatively weak. In chemisorption, there is an actual sharing of electrons or electron interchange between the chemisorbed species and the solid surface. The solid surfaces bond very strongly to the adsorption species through covalent bonds. Chemically reacted films are formed by the chemical reaction of a solid surface with the environment. The physisorbed film can be either monomolecularly or polymolecularly thick. The chemisorbed films are monomolecular, but stoichiometric films formed by chemical reaction can have a large film thickness. In general, the stability and durability of surface films decrease in the following order: chemically reacted films, chemisorbed films, and physisorbed films. A good boundary lubricant should have a high degree of interaction between its molecules and the sliding surface. As a general rule, liquids are good lubricants when they are polar and, thus, able to grip solid surfaces (or be adsorbed). In this chapter, we focus on PFPEs. We first introduce details of the commonly used PFPE lubricants; then present a summary of nanodeformation, molecular conformation, and lubricant spreading studies; followed by an overview of nanotribological properties of polar and nonpolar PFPEs studied by atomic force microscopy (AFM) and some concluding remarks.

19.1 Introduction

Boundary films are formed by physisorption, chemisorption, and chemical reaction. With physisorption, no exchange of electrons takes place between the molecules of the adsorbate and those of the adsorbant. The physisorption process typically involves van der Waals forces, which are relatively weak. In chemisorption, there is an actual sharing of electrons or electron interchange between the chemisorbed species and the solid surface. The solid surfaces bond very strongly to the adsorption species through covalent bonds. Chemically reacted films are formed by the chemical reaction of a solid surface with the environment. The physisorbed film can be either monomolecularly or polymolecularly thick. The chemisorbed films are monomolecular, but stoichiometric films formed by chemical reaction can have a large film thickness. In general, the stability and durability of surface films decrease in the following
order: chemically reacted films, chemisorbed films, and physisorbed films. A good boundary lubricant should have a high degree of interaction between its molecules and the sliding surface. As a general rule, liquids are good lubricants when they are polar and, thus, able to grip solid surfaces (or be adsorbed). Polar lubricants contain reactive functional groups with low ionization potential, or groups having high polarizability [1–3]. Boundary lubrication properties of lubricants are also dependent upon the molecular conformation and lubricant spreading [4–7].

Self-assembled monolayers (SAMs), Langmuir–Blodgett (LB) films, and perfluoropolyether (PFPE) films can be used as boundary lubricants [2, 3, 8–10]. PFPE films are commonly used for lubrication of magnetic rigid disks and metal evaporated magnetic tapes to reduce friction and wear of a head-medium interface [10]. PFPEs are well suited for this application because of the following properties: low surface tension and low contact angle, which allow easy spreading on surfaces and provide a hydrophobic property; chemical and thermal stability, which minimizes degradation under use; low vapor pressure, which provides low out-gassing; high adhesion to substrate via organofunctional bonds; and good lubricity, which reduces the interfacial friction and wear [10–12]. While the structure of the lubricants employed at the head-medium interface has not changed substantially over the past decade, the thickness of the PFPE film used to lubricate the disk has steadily decreased from multilayer thicknesses to the sub-monolayer thickness regime [11, 13]. Molecularly thick PFPE films are also being considered for lubrication purposes of the evolving microelectromechanical systems (MEMS) MEMS industry [14]. It is well-known that the properties of molecularly thick liquid films confined to solid surfaces can be dramatically different from those of the corresponding bulk liquid. In order to efficiently develop lubrication systems that meet the requirements of the advanced rigid disk drive and MEMS industries, the impact of thinning the PFPE lubricants on the resulting of nanotribology should be fully understood [15, 16]. It is also important to understand lubricant-substrate interfacial interactions and the influence of the operating environment on the nanotribological performance of molecularly thick PFPEs.

An overview of nanotribological properties of SAMs and LB films can be found in many references such as [17]. In this chapter, we focus on PFPEs. We first introduce details of the commonly used PFPE lubricants; then present a summary of nanodeformation, molecular conformation, and lubricant spreading studies; followed by an overview of nanotribological properties of polar and nonpolar PFPEs studied by atomic force microscopy (AFM) and some concluding remarks.

19.2 Lubricants Details

Properties of two commonly used PFPE lubricants (Z-15 and Z-DOL) are reviewed here. Their molecular structures are shown schematically in Fig. 19.1. Z-15 has nonpolar −CF₃ end groups, whereas Z-DOL is a polar lubricant with hydroxyl (−OH) end groups. Their typical properties are summarized in Table 19.1. It shows that Z-15 and Z-DOL almost have the same density and surface tension. But Z-15 has larger