4 Foundations of q-physics

We present the standard q-theory\(^1\) while, at each element, striving for the maximum likeness to Chap. 2 on Foundations of classical physics. We go slightly beyond the traditional treatment and, e.g., we define non-projective q-measurements as well as the phenomenon of entanglement. Leaf through Chap. 2 again, and compare!

4.1 State space, superposition

The state space of a q-system is a Hilbert space \(\mathcal{H} \), in case of \(d \)-state q-system it is the \(d \)-dimensional complex vector space:

\[
\mathcal{H} = \mathbb{C}^d = \{ c_\lambda; \lambda = 1, 2, \ldots, d \},
\]

(4.1)

where the \(c_k \)'s are the elements of the complex column-vector in the given basis. The pure state of a q-system is described by a complex unit vector, also called state vector. In basis-independent abstract (Dirac-) notation it reads:

\[
|\psi\rangle \equiv \left[\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_d \end{array} \right], \quad \langle \psi | \equiv [c_1^*, c_2^*, \ldots, c_d^*], \quad \sum_{\lambda=1}^{d} |c_\lambda|^2 = 1.
\]

(4.2)

The inner product of two vectors is denoted by \(\langle \psi | \varphi \rangle \). Matrices are denoted by a “hat” over the symbols, and their matrix elements are written as \(\langle \psi | \hat{A} | \varphi \rangle \). In q-theory, the components \(c_k \) of the complex vector are called probability amplitudes. Superposition, i.e. normalized complex linear combination of two or more vectors, yields again a possible pure state.

The generic state is mixed, described by trace-one positive semidefinite density matrix:

\[
\hat{\rho} = \{ \rho_{\lambda\mu}; \lambda, \mu = 1, 2, \ldots, d \} \geq 0, \quad \text{tr} \, \hat{\rho} = 1.
\]

(4.3)

The generic state is interpreted on the statistical ensemble of identical systems. The density matrix of pure state (4.2) is a special case, it is the one-dimensional hermitian projector onto the subspace given by the state vector:

\(^1\) Cf. [6] by von Neumann.
\[\hat{\rho}_{\text{pure}} = \hat{P} = |\psi\rangle \langle \psi| . \] (4.4)

We can see that multiplying the state vector by a complex phase factor yields the same density matrix, i.e., the same q-state. Hence the phase of the state vector can be deliberately altered, still the same pure q-state is obtained. In the conservative q-theory, contrary to the classical theory, not even the pure state is interpreted on a single system but on the statistical ensemble of identical systems.

4.2 Mixing, selection, operation

Random mixing the elements of two ensembles of q-states \(\hat{\rho}_1 \) and \(\hat{\rho}_2 \) at respective rates \(w_1 \geq 0 \) and \(w_2 \geq 0 \) yields the new ensemble of the q-state

\[\hat{\rho} = w_1 \hat{\rho}_1 + w_2 \hat{\rho}_2; \quad 0 \leq w_1, w_2 \leq 1; \quad w_1 + w_2 = 1 . \] (4.5)

A generic mixed q-state can always be prepared (i.e. decomposed) as the mixture of two or more other mixed q-states in infinitely many different ways. After mixing, however, it is totally impossible to distinguish which way the mixed q-state was prepared. It is crucial, of course, that mixing must be probabilistic. A given mixed q-state can also be prepared (decomposed) as a mixture of pure q-states and this mixture is, contrary to the classical case, not unique in general.

Let operation \(M \) on a given q-state \(\hat{\rho} \) mean that we perform the same transformation on each q-system of the corresponding statistical ensemble. Mathematically, \(M \) is linear trace-preserving completely positive map, cf. Sect. 8.1, to bring an arbitrary state \(\hat{\rho} \) into a new state \(M \hat{\rho} \). Contrary to classical operations, not all positive maps correspond to realizable q-operations, but the completely positive ones. The operation’s categorical linearity follows from the linearity of the procedure of mixing (4.5). Obviously we must arrive at the same q-state if we mix two states first and then we subject the systems of the resulting ensemble to the operation \(M \) or, alternatively, we perform the operation prior to the mixing the two ensembles together:

\[M (w_1 \hat{\rho}_1 + w_2 \hat{\rho}_2) = w_1 M \hat{\rho}_1 + w_2 M \hat{\rho}_2 . \] (4.6)

This is just the mathematical expression of the operation’s linearity.

Selection of a given ensemble into specific sub-ensembles, a contrary process of mixing, will be possible via so-called selective q-operations. They correspond mathematically to trace-reducing completely positive maps, cf. Sect. 8.3. The most typical selective q-operations are called q-measurements 4.4.

4.3 Equation of motion

Dynamical evolution\(^2\) of a closed q-system is determined by its hermitian Hamilton matrix \(\hat{H} \). The von Neumann equation of motion takes this form:

\(^2\)Our lectures use the Schrödinger-picture: the q-states \(\hat{\rho} \) evolve with \(t \), the q-physical quantities \(\hat{A} \) do not.