Cultivation of Hematopoietic Stem and Progenitor Cells: Biochemical Engineering Aspects

Thomas Noll¹,*, Nanni Jelinek², Sebastian Schmidt¹,³, Manfred Biselli¹,⁴, Christian Wandrey¹

¹ Institut für Biotechnologie 2, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
E-mail: th.noll@fz-juelich.de
² Biogenerix, Janderstr. 3, 68199 Mannheim, Germany
³ Bayer AG, ZT-TE 5.6, 51368 Leverkusen, Germany
⁴ University of Applied Sciences Aachen, Ginsterweg 1, 52428 Jülich, Germany

Dedicated to Prof. Dr. Wolf-Dieter Deckwer on the occasion of his 60th birthday

The ex vivo expansion of hematopoietic cells is one of the most challenging fields in cell culture. This is a rapidly growing area of tissue engineering with many potential applications in bone marrow transplantation, transfusion medicine or gene therapy. Over the last few years much progress has been made in understanding hematopoietic differentiation, discovery of cytokines, isolation and identification of cellular subtypes and in the development of a variety of bioreactor concepts. All this has led to a number of (preliminary) clinical trials that gave a hint of the benefits that can be obtained from the use of expanded hematopoietic cells in therapy. Moreover, as we understand the complexity and the regulation of hematopoiesis, it becomes obvious that highly sophisticated cultivation techniques and bioreactor concepts are needed: a new challenge for bioprocess engineering in cell culture.

Keywords. Hematopoietic cell culture, Stem and progenitor cells, Ex vivo expansion, Bioprocess engineering

1 Introduction ... 113

2 The Hematopoietic System 113

2.1 Sources of Hematopoietic Cells 115
2.2 Potential Medical Applications 116

3 Cultivation Parameters .. 117

3.1 Cytokines .. 117
3.2 Culture Media and Feeding Schedules 118
3.3 Oxygen Tension .. 118
3.4 pH ... 119
3.5 Osmolality .. 119
3.6 Biocompatibility of Materials 120

* To whom all correspondence should be adressed.
4 Concepts of Cultivation .. 120

4.1 Cultivation of Isolated Stem and Progenitor Cells 121
4.2 Cultivation with Stromal Cells or Stroma-Derived Factors 123

5 Conclusions and Outlook .. 125

References .. 125

Abbreviations

BFU-E burst-forming unit erythroid
BM bone marrow
CAFC cobblestone-area-forming cell
CB cord blood
CD cluster of differentiation
CFC colony-forming cell
CFU colony-forming unit
CFU-Ba CFU basophil
CFU-Eo CFU eosinophil
CFU-E CFU erythrocyte
CFU-G CFU granulocyte
CFU-GEMM CFU granulocyte/erythrocyte/macrophage/megacaryocyte
CFU GM CFU granulocyte/macrophage
CFU-M CFU macrophage
CFU-Meg CFU megacyctocyte
CMV cytomegalovirus
EBV Epstein-Barr virus
Epo erythropoietin
G-CSF granulocyte-colony-stimulating factor
GM-CSF granulocyte-macrophage colony-stimulating factor
GVHD graft-versus-host disease
HSC hematopoietic stem cell
IL interleukin
LTC-IC long-term-culture initiating cell
mM millimole per liter
MNC mononuclear cell
MPB mobilized peripheral blood
MRC mouse-repopulating cell
M-CSF macrophage colony-stimulating factor
NK natural killer
NOD-SCID non-obese diabetic severe combined immune deficiency
PS polystyrene
SCEPF stem cell expansion promoting factor
SCF stem cell factor
SCM stromal-conditioned medium
SDF-1 stromal-derived factor 1