On Paths in a Complete Bipartite Geometric Graph

Atsushi Kaneko1 and M. Kano2

1 Department of Computer Science and Communication Engineering, Kogakuin University, Shinjuku-ku, Tokyo 1563-8677, Japan
2 Department of Computer and Information Sciences, Ibaraki University, Hitachi 316-8511, Japan

Abstract. Let A and B be two disjoint sets of points in the plane such that no three points of $A \cup B$ are collinear, and let n be the number of points in A. A geometric complete bipartite graph $K(A, B)$ is a complete bipartite graph with partite sets A and B which is drawn in the plane such that each edge of $K(A, B)$ is a straight-line segment. We prove that (i) If $|B| \geq (n + 1)(2n - 4) + 1$, then the geometric complete bipartite graph $K(A, B)$ contains a path that passes through all the points in A and has no crossings; and (ii) There exists a configuration of $A \cup B$ with $|B| = \frac{n^2}{4} + \frac{n}{2} - 1$ such that in $K(A, B)$ every path containing the set A has at least one crossing.

1 Introduction

Let G be a finite graph without loops or multiple edges. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of G, respectively. For a vertex v of G, we denote by $\deg_G(v)$ the degree of v in G. For a set X, we denote by $|X|$ the cardinality of X. A geometric graph $G = (V(G), E(G))$ is a graph drawn in the plane such that $V(G)$ is a set of points in the plane, no three of which are collinear, and $E(G)$ is a set of (possibly crossing) straight-line segments whose endpoints belong to $V(G)$. If a geometric graph G is a complete bipartite graph with partite sets A and B, i.e., $V(G) = A \cup B$, then G is denoted by $K(A, B)$, which may be called a geometric complete bipartite graph.

In 1996, M. Abellanas, J. García, G. Hernández, M. Noy and P. Ramos \cite{1} showed the following result.

Theorem A (Abellanas et al. \cite{1}) Let A and B be two disjoint sets of points in the plane such that $|A| = |B|$ and no three points of $A \cup B$ are collinear. Then the geometric complete bipartite graph $K(A, B)$ contains a spanning tree T without crossings such that the maximum degree of T is $O(\log |A|)$.

In 1999, Kaneko \cite{3} improved their result and proved the following theorem.

Theorem B (Kaneko \cite{3}) Let A and B be two disjoint sets of points in the plane such that $|A| = |B|$ and no three points of $A \cup B$ are collinear. Then the geometric complete bipartite graph $K(A, B)$ contains a spanning tree T without crossings such that the maximum degree of T is at most 3.
It is well-known that under the same condition in Theorem B, there are configurations of $A \cup B$ such that $K(A, B)$ does not contain a Hamiltonian path without crossings [2]. Note that the upper bound of the number of crossings of Hamiltonian cycles in $K(A, B)$ is given in [4]. So we are led to the following problem. Given two disjoint sets A and B of points in the plane such that no three points of $A \cup B$ are collinear, if $|B|$ is large compared with $|A|$, then does $K(A, B)$ contain a path P without crossings such that $V(P)$ contains the set A? The answer to the above question is in the affirmative, as we shall see now. We prove the following theorem.

Theorem 1. Let A and B be two disjoint sets of points in the plane such that no three points of $A \cup B$ are collinear, and let n be the number of points in A.

(i) If $|B| \geq (n + 1)(2n - 4) + 1$, then the geometric complete bipartite graph $K(A, B)$ contains a path P without crossings such that $V(P)$ contains the set A.

(ii) There exists a configuration of $A \cup B$ with $|B| = \frac{n^2}{16} + \frac{n}{2} - 1$ such that in $K(A, B)$ every path containing the set A has at least one crossing.

In order to prove Theorem 1, we need some notation and definitions. For a set X of points in the plane, we denote by $\text{conv}(X)$ the convex hull of X. The boundary of $\text{conv}(X)$ is a polygon whose segments and extremes are called the edges and the vertices of $\text{conv}(X)$, respectively. For two points x and y in the plane, we denote by xy the straight line segment joining x to y, which may be an edge of a geometric graph containing both x and y as its vertices. Let A be a set of points in the plane, let y be a vertex of $\text{conv}(A)$ and let x be a point exterior to $\text{conv}(A)$. Then we say that x sees y on $\text{conv}(A)$ if the line segment xy intersects $\text{conv}(A)$ only at y.

Lemma 1. Let R and S be disjoint sets of points in the plane with $|R| \geq |S|$ such that no three points of $R \cup S$ are collinear. Suppose that there exists a line in the plane that separates R and S. Let x and y be two vertices of $\text{conv}(R \cup S)$ such that $x \in S$, $y \in R$, and xy is an edge of $\text{conv}(R \cup S)$. Then in $K(R, S)$, there exists a path P without crossings such that

(i) the vertex x is an end of P, and

(ii) P passes through all the points in A.

Proof. We prove the lemma by induction on $|R \cup S|$. If $|S| = 1$ or $|S| = 2$, then the lemma follows immediately, and so we may assume $|R| \geq |S| \geq 3$.

Let x_1 be the vertex of $\text{conv}(R \cup S)$ such that $x_1 \in S$ and xx_1 is an edge of $\text{conv}(R \cup S)$ (see Figure 1(b)).

Then we can find two points $z_1 \in S - \{x\}$ and $z \in R$ such that x can see both z_1 and z, and z_1z is an edge of $\text{conv}(R \cup S - \{x\})$ (see Figure 1(b)). Note that it may occur that $z_1 = x_1$ and/or $z = y$. Similarly, we can find two more points $w_1 \in S - \{x\}$ and $w \in R - \{z\}$ such that z can see both w_1 and w, and w_1w is an edge of $\text{conv}(R \cup S - \{x, z\})$ (see Figure 1(b)). Note that it may occur that $w_1 = z_1$ (and/or $w = y$ if $z \neq y$).

We now apply the inductive hypothesis to $S - \{x\}, R - \{z\}, w_1$, and w. Then there exists a path P' in $K(S - \{x\}, R - \{z\})$ without crossings that starts with