ALGEBRAIC EXTENSIONS AND ALGEBRAIC CLOSURE
IN SCRATCHPAD II

C. Dicrescenzo
TIM3, 46 av. F.-Viallet, F-38031 Grenoble Cedex
D. Duval
Institut Fourier, BP74, F-38402 St-Martin-d’Hères Cedex

Introduction. — Many problems in computer algebra, as well as in high-school exercises, are such that their statement only involves integers but their solution involves complex numbers. For example, the complex numbers \(\sqrt{2} \) and \(-\sqrt{2}\) appear in the solutions of elementary problems in various domains:

- In integration:
 \[
 \int \frac{dx}{x^2 - 2} = \frac{\log(x - \sqrt{2})}{2\sqrt{2}} + \frac{\log(x - (-\sqrt{2}))}{2(-\sqrt{2})}.
 \]

- In linear algebra: the eigenvalues of the matrix \[
 \begin{pmatrix}
 1 & 1 \\
 1 & -1
 \end{pmatrix}
\]
 are \(\sqrt{2} \) and \(-\sqrt{2}\).

- In geometry: the line \(y = x \) intersects the circle \(y^2 + x^2 = 1 \) at the points \((\sqrt{2}, \sqrt{2}) \) and \((-\sqrt{2}, -\sqrt{2})\).

Of course, more “complicated” complex numbers appear in more complicated examples. But two facts have to be emphasized:

- In general, if a problem is stated over the integers (or over the field \(\mathbb{Q} \) of rational numbers), the complex numbers that appear are algebraic complex numbers, which means that they are roots of some polynomial with rational coefficients, like \(\sqrt{2} \) and \(-\sqrt{2}\) are roots of \(T^2 - 2 \).

- Similar problems appear with base fields different from \(\mathbb{Q} \). For example finite fields, or fields of rational functions over \(\mathbb{Q} \) or over a finite field. The general situation is that a given problem is stated over some “small” field \(\mathbb{K} \), and its solution is expressed in an algebraic closure \(\overline{\mathbb{K}} \) of \(\mathbb{K} \), which means that this solution involves numbers which are roots of polynomials with coefficients in \(\mathbb{K} \).

The aim of this paper is to describe an implementation of an algebraic closure domain constructor in the language Scratchpad II [Je], simply called Scratchpad below. In the first part we analyze the problem, and in the second part we describe a solution based on the D5 system.

This implementation is still in progress. It has been initiated during a stay at I.B.M. Thomas J. Watson Research Center, and we would like to thank everyone in the Scratchpad group for their kind help.
1. Simple algebraic extensions and algebraic closure:

Analysis. — The preceding examples were too simple to be typical of the way algebraic numbers appear during a given computation. A better example is the computation of the Puiseux expansions of a curve at its singular points:

Let Γ be an algebraic plane curve of equation $F(x, y) = 0$ for some bivariate polynomial $F(X, Y)$ with coefficients in \mathbb{Q}. Assume that we want to determine all the singular points of Γ over the field \mathbb{C} of complex numbers, and all the Puiseux expansions of Γ at these points. We shall not define precisely these notions here (see [Wa] for classical definitions, and [Du] for rationality questions). Here, we only have to know that the singular points of Γ are in finite number, and that they cancel the derivative F'_Y of F with respect to Y. The Puiseux expansions of Γ at a point $M_0 = (x_0, y_0)$ of Γ are the local parametrizations of the branches of Γ at M_0 of the form

$$x = x_0 + t^\epsilon, \quad y = y_0 + \sum_{i \geq 1} y_i t^i.$$

Let $D(X)$ denote the discriminant of $F(X, Y)$ with respect to Y, so that $D(X)$ is a polynomial in X with coefficients in \mathbb{Q}. Then every singular point $M_0 = (x_0, y_0)$ of Γ is such that $D(x_0) = 0$, and of course $F(x_0, y_0) = 0$. It follows that x_0 is algebraic over \mathbb{Q}. Let $\mathbb{Q}(x_0)$ denote the subfield of \mathbb{C} generated by x_0 over \mathbb{Q}, i.e. the smallest subfield of \mathbb{C} that contains \mathbb{Q} and x_0. Then the equality $F(x_0, y_0) = 0$ means that y_0 is a root of the univariate polynomial $F(x_0, Y)$ in Y with coefficients in $\mathbb{Q}(x_0)$. It follows that y_0 is algebraic over $\mathbb{Q}(x_0)$, and by a classical result of number theory, that y_0 is algebraic over \mathbb{Q}. The smallest subfield of \mathbb{C} that contains both x_0 and y_0 is denoted $\mathbb{Q}(x_0, y_0)$. Let \mathbb{Q} denoted the subset of \mathbb{C} made of the complex numbers which are algebraic over \mathbb{Q}. Then \mathbb{Q} is a subfield of \mathbb{C}, which contains $\mathbb{Q}(x_0, y_0)$.

Now, let us consider a Puiseux expansion of Γ at M_0, say $x = x_0 + t^\epsilon, \quad y = y_0 + \sum_{i \geq 1} y_i t^i$. It has been proved by I. Newton that there exists an integer N and polynomials $\varphi_i(X, Y, Y_1, \ldots, Y_i)$ for $i = 1$ to N, with positive degree in Y_i, such that

$$\varphi_i(x_0, y_0, y_1, \ldots, y_i) = 0.$$

This means that each coefficient y_i is algebraic over the field $\mathbb{Q}(x_0, y_0, y_1, \ldots, y_{i-1})$, and thus algebraic over \mathbb{Q}. For $i > n$, the y_i's are in the field $\mathbb{Q}(x_0, y_0, y_1, \ldots, y_N)$, so that the tower of fields

$$\mathbb{Q} \subset \mathbb{Q}(x_0) \subset \mathbb{Q}(x_0, y_0) \subset \ldots \subset \mathbb{Q}(x_0, y_0, y_1, \ldots, y_i) \subset \ldots$$

actually is finite.

More generally, let us now consider the following situation: a given computable field K_0 is given, and an algebraic closure \overline{K} of K_0 is fixed. A tower

$$K_0 \subset K_1 \subset \ldots \subset K_n$$

of subfields of \overline{K} is constructed, such that each K_i (for $1 \leq 1 \leq n$) is a simple algebraic extension of K_{i-1} by a root α_i of a univariate polynomial P_i with coefficients in K_{i-1}. It means that K_i is the smallest subfield of \overline{K} which contains K_{i-1} and α_i, and is usually denoted $K_i = K_{i-1}(\alpha_i)$. This is the general way algebraic extensions appear in computer algebra.