OPTIMAL PARALLEL ALGORITHMS ON CIRCULAR-ARC GRAPHS

A.Srinivasa Rao and C.Pandu Rangan
Department of Computer Science & Engineering
I.I.T. Madras 600 036 India.

1. INTRODUCTION

Recently, a growing interest has been shown in designing parallel algorithms on restricted classes of graphs [10,11]. We present in this paper some optimal parallel algorithms on circular-arc graphs. Specifically, we present optimal parallel algorithms for finding (unweighted) maximum independent set, minimum clique cover and minimum dominating set in a unified way. Given the sorted array of end points of the arcs in the intersection model of the circular-arc graph, all the above mentioned problems can be solved sequentially in $O(n)$ time where n is the number of arcs [9]. All our parallel algorithms run in $O(\log n)$ time on an $O(n/\log n)$-processor EREW PRAM and hence they are optimal.

All the algorithms that we present will have the following form:

Stage 1: (Pruning) Delete a suitable subset of vertices of the given circular-arc graph G and obtain a graph G'.

Stage 2: (Find Successor) Define in a suitable manner a function on the vertex set of G' called NEXT.

Stage 3: (Greedy Step) Use NEXT function greedily and solve the problem on G'.

Stage 4: (Extension Step) Extend the solution of G' to G (if necessary).

2. PRELIMINARIES

All the graphs we consider in this paper are finite graphs with no multiple edges and self-loops.

Let $G = (V,E)$ be a graph. A set of vertices $S \subseteq V$ forms a clique in G if every pair of vertices in S are adjacent. A clique cover of G is a partition of vertex set V into V_1, \ldots, V_k, such that each V_i, $1 \leq i \leq k$, forms a clique in G; k is the size of the clique cover. A clique cover with minimum size is called a minimum clique cover (MCC).

A set of vertices $S \subseteq V$ forms an independent set in G if no two vertices of S are adjacent. An independent set with maximum
cardinality is called a maximum independent set (MIS).

A set \(S \subseteq V \) of vertices dominates a set \(S' \subseteq V \) if every vertex in \(S' - S \) is adjacent to some vertex in \(S \). If \(S \) dominates \(V \), we say that \(S \) is a dominating set for the graph \(G \). A dominating set with minimum cardinality is called a minimum dominating set (MDS).

The MCC, MIS, and MDS problems for an arbitrary graph are known to be NP-complete [7].

A graph \(G = (V,E) \) is a circular-arc graph if there exists a one-to-one correspondence of the vertex set \(V \) with a family \(AF \) of (closed circular) arcs on the unit circle such that two vertices are adjacent in the graph iff their corresponding arcs in the family intersect. The family \(AF \) is called an intersection model of the graph \(G \). An example is given in Fig. 1. The family \(AF \) is proper if no arc of \(AF \) is contained in some other arc of \(AF \).

Circular-arc graphs arise in various applications such as traffic-control and information retrieval and they are well studied in literature [2,5,6,8,13,14,15]. From now on, let \(AF = \{ X_1, X_2, \ldots, X_n \} \) be a family of arcs on a unit circle and \(G = (V,E), |V| = n \), be the circular-arc graph with \(AF \) as its intersection model. The arc \(X_i \) is represented by the ordered pair \((l(X_i), r(X_i)) \), where \(l(X_i) \) and \(r(X_i) \) denote its left and right end points respectively. The arc \(X_i \) exists on the circle as a traversal in the clockwise direction from \(l(X_i) \) to \(r(X_i) \) along the circumference of the circle.

Instead of presenting the algorithms on the graph \(G \), we will be working with the intersection model \(AF \) itself. For example, we will compute a maximum independent set of arcs (two arcs being independent if they do not intersect) to solve the MIS problem.

Let \(X_i \) and \(X_j \) be two arcs such that the arc \(X_j \) is totally contained in the arc \(X_i \). Then \(X_i \) is called a containing arc and arc \(X_j \) is called a contained arc.

Let \(PL \) be the sorted array of \(2n \) distinct end points of arcs in \(AF \). These points appear in \(PL \) in the same order as they are encountered in the clockwise traversal of the circle beginning at \(l(X_1) \). We note that if the end points are not sorted, then we can use the Parallel Merge Sort [3] to sort them in \(O(\log n) \) time using \(O(n) \) processors.

Let \(L \) be a list of elements \(a_1, a_2, \ldots, a_k, k > 0 \), not necessarily in that order. Then, the position of an element \(a_i \) in the list \(L \) is the number of elements that precede it in \(L \) plus one.

For a nonempty set \(S \) of integers, let \(\text{MAX}(S) \) and \(\text{MIN}(S) \) denote a maximum element and a minimum element of \(S \) respectively.