Propositional Provability and Models of Weak Arithmetic

Jan Krajíček and Pavel Pudlák
Mathematical Institute at Prague

We connect a propositional provability in models of weak arithmetics with the existence of Δ^b_1-elementary, non-Σ^b_1-elementary extensions. This is applied to demonstrate that certain lower bounds to the length of propositional proofs are not provable in weak systems of arithmetic (Corollary 4).

§1. Introduction

S^1_2 is the fragment of bounded arithmetic introduced in [1]. The language of this theory contains symbols 0, $s(x)$, $x + y$, $x \cdot y$, $|x|$, $x \frac{1}{2^y}$, $x \neq y$ and $=$, \leq, where the meaning of $|x|$ is $\lceil \log_2(x + 1) \rceil$ and $x \neq y$ is $2^{\lfloor x \rfloor} \cdot |y|$. The theory is axiomatized by 32 open axioms BASIC and the induction scheme PIND:

$$\phi(0) \& \forall x(\phi(\frac{x}{2^j}) \rightarrow \phi(x)) \rightarrow \forall x\phi,$$

where $\phi(x)$ is a Σ^b_1-formula.

Σ^b_1-formulas define in the standard model ω exactly NP-predicates. Scheme PIND is slightly weaker than the usual scheme of induction.

The work was performed while the first author was visiting Department of Mathematics, University of Illinois at Urbana.
Theory S^1_2 is closely related to the equational theory PV introduced in [4]. Using the scheme of limited recursion on notation one can define in PV a function symbol for every $PTIME$–function. Since predicates can be represented by their characteristic functions, all universal statements about $PTIME$–predicates are represented in PV. In fact, using witnessing functions, one can represent statements of higher quantifier complexity too. In [1] it is shown that a $\forall \Sigma^b_1$–sentence is provable in S^1_2 iff the corresponding equation (containing the witnessing function) is provable in PV. Thus S^1_2 is in a sense partially conservative over PV.

In [1, 4] it was demonstrated that PV and S^1_2 are rather powerful theories, e.g. one can formalize syntax and the notion of Turing machine and prove their basic properties there. Note also that PV_1 from [12] is fully conservative over PV.

Our aim here is to investigate what can be proved about the problem $NP = coNP$? in theories like PV and S^1_2 and, in particular, how strong scheme of induction is consistent with $NP = coNP$. There are two important results which should be mentioned here.

The first one is a result of Cook [4] which can be roughly stated as follows: If PV proves $NP = coNP$ then propositional tautologies $TAUT$ have polynomially long proofs in the extended Frege system EF. This means that we know in advance which NP–algorithm would accept the $coNP$–complete set $TAUT$, if $NP = coNP$ would be provable in PV. The system EF is the usual textbook axiomatic propositional calculus augmented by the extension rule allowing to abbreviate long propositions by new atoms, for details see [5].