On the strong completion of logic programs

Phan Minh Dung

Division of Computer Science, Asian Institute of Technology
GPO Box 2754, Bangkok 10501, Thailand

ABSTRACT

A new completion theory for logic programming called strong completion, is introduced. Similar to the Clark's completion, the strong completion can be interpreted either in two-valued or three-valued logic. We show that

* Two-valued strong completion specifies the stable semantics.
* Three-valued strong completion specifies the well-founded semantics.

Since the strong completion of a logic program P is also a circumscription of P, the open problem as whether or not there exists a circumscription of a logic program P which specifies the stable semantics as well as the well-founded semantics of P, is solved.

We show that the call-consistency condition is sufficient for a logic program to have a stable model. Further we prove that the stable semantics is equivalent to the well-founded semantics if the program is strict and call-consistent.

Keywords Logic programming, negation, predicate completion, stable models, well-founded models, circumscription, two-valued logic, three-valued logic.
1. INTRODUCTION

The semantics of negation is one difficult problem in logic programming. To a first approximation, the semantics may be defined by the Clark's completion [CK]. Given a logic program \(P \), the completion of \(P \), \(\text{comp}(P) \), consists of some equality axioms plus a completed definition of each predicate symbol. Roughly, this completed definition is obtained by replacing the "if" by "iff". The completion of a program can be interpreted either in the two-valued logic [CK] or in a three-valued logic [F]. While the three-valued completion is always consistent, this is not the case for the two-valued completion. But if the program is call-consistent [K,S], then two-valued completion is consistent, too. The three-valued semantics is weaker than the two-valued, in the sense that every query supported in the three-valued semantics is also supported in the two-valued semantics but not conversely. But if the program is strict and call-consistent then these two semantics are equivalent [K].

However, the Clark's completion does not always capture the intended meaning of the program. For example, let \(P \) consist of the single clause \(p \leftarrow p \). Intuitively, we expect that any meaningful semantics of \(P \) would imply that \(p \) is false. But since the completion of \(P \), \(\text{comp}(P) \), is \(p \leftarrow \lnot p \) we can not conclude from \(\text{comp}(P) \) that \(p \) is false. Thus it is necessary to find new ways for specifying the intuitive meaning of logic programs. There are two ways to solve this sort of problems: The two-valued stable model approach and the three-valued well-founded model approach.

The stable semantics of a program \(P \) is specified by the set of stable models of \(P \). A stable model is defined as one that is able to reproduce itself by the Gelfond-Lifschitz transformation [GL]. One problem of the stable semantics is that not very logic program has a stable model. This problem is similar to the consistency problem of the Clark's completion in two-valued logic.

The well-founded semantics is defined by the well-founded model. The well-founded model is the least fixed point of a monotonic operator. Similarly to the three-valued semantics of the Clark's completion, a distinguished feature of the well-founded semantics is that every logic program has an unique well-founded model [GRS]. A proof theory based on the SLS-resolution is also given for well-founded semantics [R,PT2].

One common problem for stable semantics and well-founded semantics is