On the Complexity of Graph Embeddings
(Extended Abstract)

Jianer Chen * Saroja P. Kanchi ** Arkady Kanevsky ***
Texas A&M University, College Station TX 77843, USA

Abstract. It is known that embedding a graph G into a surface of minimum genus $\gamma_{\text{min}}(G)$ is NP-hard, whereas embedding a graph G into a surface of maximum genus $\gamma_{\text{M}}(G)$ can be done in polynomial time. However, the complexity of embedding a graph G into a surface of genus between $\gamma_{\text{min}}(G)$ and $\gamma_{\text{M}}(G)$ is still unknown. In this paper, it is proved that for any function $f(n) = O(n^e)$, $0 \leq e < 1$, the problem of embedding a graph G of n vertices into a surface of genus at most $\gamma_{\text{min}}(G) + f(n)$ remains NP-hard, while there is a linear time algorithm that approximates the minimum genus embedding either within a constant ratio or within a difference $O(n)$. A polynomial time algorithm is also presented for embedding a graph G into a surface of genus $\gamma_{\text{M}}(G) - 1$.

1 Introduction

Minimum genus $\gamma_{\text{min}}(G)$ of a graph G is defined to be the smallest integer k, such that G has a 2-cell embedding into an orientable surface of genus k. Maximum genus $\gamma_{\text{M}}(G)$ of a graph G is defined to be the largest integer k such that G has a 2-cell embedding into an orientable surface of genus k.

Embedding a graph into topological surfaces is a fundamental, yet very difficult, problem. The computational complexity of constructing the embeddings of a graph into surfaces of different genus is not well-understood. Not much progress had been made until very recently. Algorithms have been developed for embedding a graph into the minimum genus surface as well as into the maximum genus surface. It was demonstrated by Furst, Gross, and McGeoch [5] that a maximum genus embedding of a graph can be constructed in polynomial time. The algorithm presented in [5] is based on a characterization of the maximum genus of a graph given by Xuong [14]. On the other hand, research shows that constructing minimum genus embeddings of a graph is more difficult. For the class C_g of graphs whose minimum genus is bounded by a constant g, Filotti, Miller, and Reif [4] derived an $O(n^{O(g)})$ time algorithm for determining the minimum genus of a graph, which was improved recently by Djidjev and Reif [2] who developed an algorithm of time $O(2^{O(g)}n^{O(1)})$. The celebrated work of Robertson and Seymour [12] gives an $f(g)n^2$ time algorithm for determining the

* Supported by the National Science Foundation under Grant CCR-9110824.
** Supported by Engineering Excellence Award from Texas A&M University.
*** Supported in part by the NATO Scientific Affairs Division under collaborative research grant 911016.
minimum genus of a graph in the class C_g, where $f(g)$ is a very fast growing function. A result for general graphs was obtained recently by Thomassen [13], who showed that the following problem is NP-complete: given a graph G and an integer k, is $\gamma_{\text{min}}(G) \leq k$? Note that this question was one of the remaining basic open problems, listed by Garey and Johnson [6].

At the end of their paper [5], Furst, Gross, and McGeoch posed several open problems, one of them is asking the complexity of embedding a graph into a surface of genus k, where $\gamma_{\text{min}}(G) < k < \gamma_{\text{M}}(G)$.

In the present paper, we will provide a partial answer to the above question. Our main results are: 1) for any function $f(n) = O(n^\epsilon)$, where $0 \leq \epsilon < 1$ is a fixed constant, constructing an embedding of a graph G of n vertices into a surface of genus at most $\gamma_{\text{min}}(G) + f(n)$ is still NP-hard; 2) a polynomial time algorithm for embedding a graph G into a surface of genus $\gamma_{\text{M}}(G) - 1$; and 3) a linear time algorithm that, given a graph G of n vertices, constructs an embedding $\Pi(G)$ of G such that either the genus of $\Pi(G)$ is less than $\gamma_{\text{min}}(G) + O(n)$ or the ratio between the genus of $\Pi(G)$ and the minimum genus $\gamma_{\text{min}}(G)$ is bounded by a constant.

We point out that our first two results are not simple consequences of the process of locally altering an embedding of a graph and decreasing the embedding genus. In fact, the process of decreasing embedding genus by locally altering the embedding is not always possible. As demonstrated by Gross and Rieper [9], there are non-minimum genus embeddings of some graphs, on which no local alteration will decrease the embedding genus. It is in fact unknown whether there exist a region R between the minimum genus and the maximum genus and a polynomial time algorithm A_R such that given an embedding of a graph G into a surface of genus k, where k is within the region R, the algorithm A_R constructs a genus $k - 1$ embedding of the graph G.

Our first result of the intractability of embedding a graph G into a surface of genus at most $\gamma_{\text{min}}(G) + f(n)$, where $f(n) = O(n^\epsilon)$, $0 \leq \epsilon < 1$, is based on a simple graph operation, the bar amalgamation. The contribution of the second result is to demonstrate that given a graph G, there exists a special maximum genus embedding of G, which can be constructed in polynomial time, such that it is always possible to decrease the embedding genus by locally altering the embedding. Our third result is based on a simple combinatorial analysis, and it is in contrast to the first result in some sense: the first result demonstrates that it is hard to approximate the minimum genus of a graph within a difference $O(n^\epsilon)$, $0 \leq \epsilon < 1$, while the third result claims that we can always approximate the minimum genus of a graph easily either within a constant ratio or within a difference $O(n)$.

The paper is organized as follows. In Section 2, we introduce the necessary background on theory of graph embeddings. The intractability of embedding a graph G into a surface of genus at most $\gamma_{\text{min}}(G) + f(n)$, where $f(n) = O(n^\epsilon)$, $0 \leq \epsilon < 1$, is demonstrated in Section 3. A polynomial time algorithm for constructing an embedding of genus $\gamma_{\text{M}}(G) - 1$ for a graph G is presented in Section 4. The approximability of graph minimum genus is discussed in Section 5.