The Transformation Calculus

Jacques Garrigue

Research Institute for Mathematical Sciences
Kyoto University, Kitashirakawa-Oiwakecho
Sakyo-ku, Kyoto 606-01 JAPAN
Tel ++81-75-753-7211
Fax ++81-75-753-7272
E-mail garrigue@kurims.kyoto-u.ac.jp

Abstract. The lambda-calculus, by its ability to express any computable function, is theoretically able to represent any algorithm. However, notwithstanding their equivalence in expressiveness, it is not so easy to find a natural translation for algorithms described in an imperative way.

The transformation calculus, which only extends the notion of currying in lambda-calculus, appears to be able to correct this flaw, letting one implicitly manipulate a state through computations.

This calculus remains very close to lambda-calculus, and keeps most of its properties. We proved confluence of the untyped calculus, and strong-normalization in presence of a typing system.

1 Introduction

Currying is as old as lambda calculus. For the simple reason that, in raw lambda calculus—without pairing or similar built-in constructs—, this is the only way to represent multi-argument functions. This just means that we will write

$$\lambda x. \lambda y. M[x, y]$$

in place of

$$(x, y) \mapsto M[x, y].$$

At this stage appears a first asymmetry: while in the pair (x, y) the two variables play symmetrical roles, in $\lambda x. \lambda y. M$ they don’t. An implicit order was introduced. Materially this means that we can partially apply our function directly on x but not on y.

We now look at types. There, currying can be seen as isomorphism of types [3]:

$$(A \times B) \rightarrow C \simeq A \rightarrow B \rightarrow C.$$

Here comes another asymmetry: why don’t we get any similar isomorphism for $A \rightarrow (B \times C)$.

The calculus we will present here generalizes currying to these two kinds of symmetries: between arguments, and between input and output. For the first one, we are just taking over the mechanism of label-selective currying developed previously [1, 11].

For the second one we develop a new notion of composition, which, contrary to the usual one, is compatible with currying.
The resulting system, \textit{transformation calculus}, is a conservative extension of lambda calculus. Why such a name? Because this essentially syntactic extension—semantics remain very similar—provides us with a new way of representing state transformations, \textit{i.e.} state being represented by labeled input parameters, that may get returned by our term. Handling state as a supplementary parameter that gets returned with the result is not new. But by extending currying we get more flexibility, in two ways. First, since a part of the state is no more than a labeled parameter, we can dynamically extend it by simply adding a new parameter at some point in our term. Second, selective currying lets a transformation ignore parts of the state it doesn’t need. They will just be left unmodified.

To demonstrate our point, we introduce \textit{scope-free variables}, which are trivially encoded in the transformation calculus, and can be used in place of usual scoped mutable variables, in the Algol tradition. Since they have no syntactic scope, scope-free variables respect dynamic binding rather than static binding; but they are more flexible than Algol variables, while simulating blocks and stack discipline.

The rest of this paper is composed as follows. In Section 2 we introduce progressively the different features which form the transformation calculus. Section 3 is devoted to the formal definition of the transformation calculus. Sections 4 and 5 respectively define and give the fundamental properties of scope-free variables and a simply typed transformation calculus. Related works are presented in Section 6. Finally, Section 7 concludes. For lack of space, no proofs are given in this paper\footnote{They can be found, together with denotational semantics for the simply typed calculus, in the report version \cite{9}.}.

\section{Composition and streams}

We first introduce informally and progressively the features of our calculus. We start from the classical pure lambda-calculus, that is\footnote{Application, denoted by a dot, is written postfix, and is left associative.}

\[M ::= x | \lambda x.M | (M).M \]

with β-reduction

\[(N).\lambda x.M \rightarrow_\beta [N/x]M\]

and where terms are considered modulo α-conversion (renaming of bound variables).

\subsection{Implicit currying}

Currying is the fundamental transformation by which multi-argument functions are encoded in the lambda-calculus. It can appear in abstractions as well as applications. For instance $f(a, b)$ will be encoded as $(b).(a).f$, and $\lambda(x, y).M$ becomes $\lambda x.\lambda y.M$.

This operation does not modify the nature of calculations, since clearly $(a, b).\lambda(x, y).M$ and $(b).(a).\lambda x.\lambda y.M$ reduce to the same $[(a/x, b/y)]M$ (provided x and y are distinct variables).