Efficient Generation of Binary Words of Given Weight

Nicolas Sendrier
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay CEDEX, FRANCE

1 Introduction

In some cryptographic systems [2, 3], it is necessary to put some information in binary words of given weight, say t, and given length, say n.

It is possible to produce an explicit bijection between the set $W_{n,t}$ of these words and the set of integer $\{1, 2, \ldots, \binom{n}{t}\}$. As far as we know, this cannot be achieved efficiently.

We propose here a procedure that converts any binary sequence into elements of $W_{n,t}$ in linear time both for encoding and decoding. The solution we propose is an approximation: all the words of $W_{n,t}$ will not be reached and the words of $W_{n,t}$ are not obtained with uniform probability.

2 Representing Words of Given Weight

Let x be an element of $W_{n,t}$, and let $k_0 < \ldots < k_{t-1}$ denote the positions of the “1”s, the positions are numbered from 1 to n. Let $l_0 = k_0$, and for all i, $0 < i < t$, let $l_i = k_i - k_{i-1}$. The word x will be represented by the t-tuple of integers (l_0, \ldots, l_{t-1}).

Reciprocally, any t-tuple of strictly positive integers (l_0, \ldots, l_{t-1}) such that $\sum_{i=0}^{t-1} l_i \leq n$ will represent an element of $W_{n,t}$.

Our goal is to encode binary information into such t-tuples.

3 Huffman Code

We consider the memoryless source $X = \{1, \ldots, K\}$ with the law probability $P_X(i) = \lambda \binom{n-i}{t-1}/\binom{n}{t}$, where λ is such that $\sum_{i=1}^{K} P_X(i) = 1$.

When $K = n - t + 1$, then $\lambda = 1$, and the probability $P_X(i)$ is the probability to have a sequence of $i - 1$ “0” between two “1” when we consider the set $W_{n,t}$ with a uniform distribution. We will see that taking values of K smaller than $n - k + 1$ will reduce the amount the memory for the encoder and the decoder, but will not significantly reduce the performance.

Let h_K be a Huffman code of source X [1, Ch. 3]. We have

$$h_K : \{1, \ldots, K\} \rightarrow \{0, 1\}^* = \cup_{i>0}\{0, 1\}^i$$

$$l_i \mapsto h_K(l_i)$$
To h_K we can associate the encoder of infinite sequences:

$$H_K : \{1, \ldots, K\}^\mathbb{N} \rightarrow \{0, 1\}^\mathbb{N}$$

$$(l_i)_{i \geq 0} \mapsto (h_K(l_i))_{i \geq 0}$$

Since h_K is a Huffman code, H_K is a bijection. By extension we will also use H_K to denote the image of finite sequences.

4 Encoding a Binary Sequence

Let $a = (a_i)_{i \geq 0}$ be a binary sequence to be encoded, and let

$$l = (l_i)_{i \geq 0} = H_K^{-1}(a).$$

The encoding of the t first letters of l will give

$$H_K(l_0, \ldots, l_{t-1}) = (a_0, \ldots, a_{m-1})$$

for some m. If $\sum_{i=0}^{t-1} l_i \leq n$, then the t-tuple (l_0, \ldots, l_{t-1}) represents a word of $W_{n,t}$ “containing” m bits of information.

The probability that $\sum_{i=0}^{t-1} l_i \leq n$ can be computed by using generating function techniques. We have

$$F(Y, Z) = \left(\sum_{i=1}^{K} Y^i Z^{r_i} \right)^t = \sum_{u,v} A_{u,v} Y^u Z^v$$

where r_i is the length of $h_K(i)$, and $A_{u,v}$ is the number of sequences of X^t which adds to u, and whose image by H_K has a binary length of v.

The probability of the event “$u \leq n$”, when the sequence a is produced by a uniform-ally distributed binary source, is equal to

$$P_{n,t}(K) = \sum_{u \leq n} \frac{A_{u,v}}{2^v} = \sum_{u \leq n} [Y^u] F(Y, \frac{1}{2})$$

and the average value of v given that $u \leq n$ is equal to

$$\mathcal{L}_{n,t}(K) = \frac{1}{P_{n,t}(K)} \sum_{u \leq n} \frac{v A_{u,v}}{2^v} = \frac{1}{P_{n,t}(K)} \sum_{u \leq n} [Y^u] \frac{1}{2} \frac{\partial F}{\partial Z}(Y, \frac{1}{2})$$

This number $\mathcal{L}_{n,t}(K)$ is the average number of information bits contained in one word of $W_{n,t}$ obtained that way.

For $n = 1024$, $t = 50$ and $K = 77$, we have $P_{n,t}(K) = 0.747$ and $\mathcal{L}_{n,t}(K) = 276.0$ while we have $\log_2 \binom{n}{t} = 284.0$. Such a result is practically not acceptable since on average 25% of the binary sequences cannot be encoded.