Geometric Applications of Posets*

Michael Segal and Klara Kedem

Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract. We show the power of posets in computational geometry by solving several problems posed on a set S of n points in the plane: (1) find the k rectilinear nearest neighbors to every point of S (extendable to higher dimensions), (2) enumerate the k largest (smallest) rectilinear distances in decreasing (increasing) order among the points of S, (3) given a distance $\delta > 0$, report all the pairs of points that belong to S and are of rectilinear distance δ or more (less), covering $k \geq \frac{n}{2}$ points of S by rectilinear (4) and circular (5) concentric rings, and (6) given a number $k \geq \frac{n}{2}$ decide whether a query rectangle contains k points or less.

1 Introduction

1.1 Problems

Given a set S of n points in the plane and an integer k we solve the following problems in this paper:

1. Find the k ($k \geq \frac{n}{2}$) nearest rectilinear neighbors (under L_∞ metric) for each point of S (by reporting the $n - k$ farthest rectilinear neighbors).
2. Enumerate the k largest (smallest) rectilinear distances in decreasing (increasing) order.
3. Given a distance $\delta > 0$, report all the pairs of points of S which are of rectilinear distance δ or less (more).
4. Find the smallest "rectangular" axis-aligned (constrained or not constrained) ring that contains k ($k \geq \frac{n}{2}$) points of S. A rectangular ring is two concentric rectangles, the inner rectangle fully contained in the external one. As a measure we take the maximum width or area of the ring. By constrained we mean that the center of the ring is one of the points of S.
5. Find the smallest constrained circular ring (or a sector of a constrained ring) that contains k ($k \geq \frac{n}{2}$) points of S.
6. Given a number $k \geq \frac{n}{2}$, decide whether a query rectangle contains k points or less.

* Work by Klara Kedem has been supported by a grant from the U.S.-Israeli Binational Science Foundation.
1.2 Background

Most of the problems mentioned above have been considered in previous papers [6, 7, 8, 10, 16]. Dickerson et al. [6] present an algorithm for the first problem which runs in time $O(n \log n + nk \log k)$, and works for any convex distance function. Eppstein and Erickson [10] solve the first problem on a random access machine model in time $O(n \log n + nk)$ and $O(n \log n)$ space. In the algebraic decision tree model their time bound increases by a factor of $O(\log \log n)$. Flatland and Stewart [11] present an algorithm for the first problem which runs in time $O(n \log n + nk)$ in the algebraic decision tree model. Finally, a recent paper of Dickerson and Eppstein [8] describes an $O(n \log n + nk)$ time and $O(n)$ space algorithm for the first problem, it works for any metric and is extendable to higher dimensions. For our best knowledge only Dickerson and Shugart [7] present an algorithm for the second problem (for the largest k distances) for any metric, and their algorithm requires $O(n + k)$ space with expected runtime of $O(n \log n + k \log k \log n)$. Dickerson et al. [6] present an algorithm for the problem: enumerate all the k smallest distances in S in increasing order. Their algorithm works in time $O(n \log n + k \log k)$ and uses $O(n + k)$ space. Lenhof et al. [16], Salowe [17], Dickerson and Eppstein [8] also solved this problem but they just report the k closest pairs of points without sorting the distances, spending $O(n \log n + k)$ time and $O(n + k)$ space. An algorithm for solving the second problem (for the smallest k distances) is also presented in [8], spending $O(n \log n + k \log k)$ time and using $O(n + k)$ space. [8] also considered the third problem: find all the pairs of points of S separated by distance δ or less. They give an $O(n \log n + k)$ time and $O(n)$ space algorithm, where k is the number of distances not greater than δ.

Problem 6 is a variant of the orthogonal range search where we are given a set S of n points and want to find which points are enclosed by the query rectangle. This problem was efficiently solved by Bentley [3] in $O(\log n + m)$ query time, where m is the number of points contained in the given query rectangle, using the range search tree and with preprocessing time and space $O(n \log n)$.

Some variations of problems 4 and 5 have been considered in previous papers. Efrat et al. [9] consider the problem of enclosing k points within a minimal area circle and pose an open problem of covering k points by a ring. They gave two solutions for the smallest k-enclosing circle. When using $O(nk)$ storage, the problem can be solved in time $O(nk \log^2 n)$. When only $O(n \log n)$ storage is allowed, the running time is $O(nk \log^2 n \log \frac{n}{k})$. The problem of computing the roundness of a set of points, which is defined as the minimum width concentric annulus that contains all points of the set was solved in [2, 14, 19]. The best known running time is $O(n^{3+\epsilon})$, given in [2], where $\epsilon > 0$ is an arbitrary small constant. Segal and Kedem [18] considered the problem of enclosing k ($k \geq \frac{n}{2}$) points in the smallest axis parallel rectangle. Their algorithm runs in time $O(n + k(n - k)^2)$ and uses $O(n)$ space. Their method and algorithm are one of the tools used in this paper, and we review it below. It is based on posets (partially ordered sets) [1]. A poset being a partially ordered set of elements.

Segal and Kedem [18] describe how to construct a poset such that a subset R of S contains the $n - k$ elements of S with the largest x coordinates. They represent S as a tournament tree. The tournament tree can be implemented as a heap. The operations of creating R and updating the tournament tree run in times $O(n + (n - k) \log n)$.