Distance Approximating Trees for Chordal and Dually Chordal Graphs*
(Extended Abstract)

Andreas Brandstädt1, Victor Chepoi2 ** and Feodor Dragan1 **

1 Universit"at Rostock, Fachbereich Informatik, Lehrstuhl f"ur Theoretische Informatik, Albert-Einstein-Str. 21, D-18051 Rostock, Germany
\{ab,dragan\}@informatik.uni-roscopec.de

2 Laboratoire de Biomathématiques, Université d’Aix Marseille II, 27 Bd Jean Moulin, F-13385 Marseille Cedex 5, France aria@pacwan.mm-soft.fr

Abstract. In this note we show that, for each chordal graph G, there is a tree T such that T is a spanning tree of the square G^2 of G and, for every two vertices, the distance between them in T is not larger than the distance in G plus two. Moreover, we prove that, if G is a strongly chordal graph or even a dually chordal graph, then there exists a spanning tree T of G which is an additive 3-spanner as well as a multiplicative 4-spanner of G. In all cases the tree T can be computed in linear time.

1 Introduction

Many combinatorial and algorithmic problems concern the distance d_G on the vertices of a possibly weighted graph $G = (V, E)$. Approximating d_G by a simpler distance (in particular, by tree-distance) is useful in many areas such as communication networks, data analysis, motion planning, image processing, network design, and phylogenetic analysis (see [1, 2, 4, 8, 10, 20, 25, 26, 28, 30]). The goal is, for a given graph G, to find a sparse graph $H = (V, E')$ with the same vertex-set, such that the distance $d_H(u, v)$ in H between two vertices $u, v \in V$ is reasonably close to the corresponding distance $d_G(u, v)$ in the original graph G. There are several ways to measure the quality of this approximation, two of them leading to the notion of a spanner. For $t \geq 1$ a spanning subgraph H of G is called a \textit{multiplicative t-spanner} of G [26, 10, 25] if $d_H(u, v) \leq t \cdot d_G(u, v)$ for all $u, v \in V$. If $r \geq 0$ and $d_H(u, v) \leq d_G(u, v) + r$ for all $u, v \in V$, then H is called an \textit{additive r-spanner} [20].

For many applications (e.g. in numerical taxonomy or in phylogeny reconstruction) the condition that H must be a spanning subgraph of G can be dropped (see [2, 28, 30]). In this case there is a striking way to measure how sharp d_H approximates d_G, based on the notion of a pseudoisometry between two metric spaces. This idea is borrowed from the geometry of hyperbolic groups

* Second and third author supported by VW, Project No. I/69041, third author supported by DFG.

** On leave from the Universitatea de stat din Moldova, Chişinău
For graphs and finite metric spaces a related notion of a near-isometry has been already used by Linial et al [21]. For our purposes we present a simplified version of this notion (the interested reader can consult [13, pp.71–72] and [16] for the general definition and related material).

Let $t \geq 1$ and $r \geq 0$ be real numbers. Two graphs $G = (V, E)$ and $H = (V, E')$ are called (t, r)-pseudoisometric if

$$d_H(u, v) \leq t \cdot d_G(u, v) + r \quad \text{and} \quad d_G(u, v) \leq t \cdot d_H(u, v) + r$$

for all $u, v \in V$. In this case we will say that H is a distance (t, r)-approximating graph for G (and conversely, G will be a distance (t, r)-approximating graph for H). The graphs G and H are $(t, 0)$-pseudoisometric iff

$$\frac{1}{t} \cdot d_G(u, v) \leq d_H(u, v) \leq t \cdot d_G(u, v)$$

for $u, v \in V$. If, in addition, H is a spanning subgraph of G, then we obtain the notion of the multiplicative t-spanner. Clearly, G and H are $(1, r)$-pseudoisometric iff $|d_G(u, v) - d_H(u, v)| \leq r$ for $u, v \in V$. Again, if H is a spanning subgraph of G, this is the usual notion of the additive r-spanner.

Recently Cai and Corneil [8] have considered multiplicative tree spanners in graphs. They showed that for a given graph G and integer t, the problem to decide whether G has a tree t-spanner is NP-complete for $t \geq 4$ and is linearly solvable for $t = 1, 2$. The status of the case $t = 3$ is still open. Tree 3-spanners exist for interval and permutation graphs and they can be found in linear time [22]. Similar results are known for the additive tree r-spanner problem. [27] proposes a simple approach to construct additive tree 2-spanners in interval and distance-hereditary graphs and such 4-spanners in cocomparability graphs. Both papers [8, 27] ask which important graph classes have tree t-spanners and r-spanners with small t and r. As it is mentioned in [27], McKee showed that for every fixed integer t there is a chordal graph without tree t-spanners (additive as well as multiplicative). Nevertheless, from the metric point of view chordal graphs look like trees. In this note we prove that for every chordal graph G there exists a tree T (actually, T is a spanning tree of the square G^2) such that

$$d_T(u, v) \leq 3 \cdot d_G(u, v) \quad \text{and} \quad d_T(u, v) \leq d_G(u, v) + 2$$

for all vertices u, v of G. In other words, T is a $(3, 0)$- and $(1, 2)$-approximating tree for G. Moreover, if G is a strongly chordal graph then there exists a spanning tree T of G which is an additive 3-spanner and a multiplicative 4-spanner. Thus, this answers the question whether strongly chordal graphs have tree t-spanners with small t, posed in [27]. Furthermore we show that the method elaborated for strongly chordal graphs works for a more general graph class, for the dually chordal graphs. In all cases the tree T can be computed in linear time.