Deformation and Viscoelastic Behavior of Polymer Gels in Electric Fields

Tohru Shiga
Toyota Central Research and Development Laboratories Inc., Nagakute-cho, Aichi-gun, Aichi-ken, 480-11 Japan

“Smart” polymer gels actively change their size, structure, or viscoelastic properties in response to external signals. The stimuli-responsive properties, indicating a kind of intelligence, offer the possibility of new gel-based technology. The article attempts to review the current status of our knowledge of electromechanical effects that take place in smart polymer gels. Deformation and the mechanism of polyelectrolyte gel behavior in electric fields are first studied experimentally and then theoretically. In particular, the swelling or bending is discussed in detail. Particulate composite gels whose modulus of elasticity can vary in electric fields are revealed as a new smart material. The driving force causing varying elastic modulus in electric fields is explained by a qualitative model based upon polarized particles. Finally, applications of the two electromechanical effects are presented.

1 Introduction 133
2 Deformation of Polyelectrolyte Gels in Electric Fields 133
 2.1 Progress of Research 133
 2.2 Swelling, Shrinking, and Bending 135
 2.3 Mechanism of Deformation 137
 2.3.1 Swelling 137
 2.3.2 Shrinking 142
3 Complex Deformation of Ionic Gels in Electric Fields 143
 3.1 Bending of Hybrid Gel 143
 3.2 Vibration of Gel Film 145
4 Electroviscoelastic Behavior of Composite Gels 148
 4.1 Principle of Electrical Control of Viscoelasticity 149
 4.2 Theoretical Approach 151
 4.2.1 Viscoelasticity in Electric Fields 151
 4.2.2 Viscoelasticity in Magnetic Fields 153
5 Viscoelastic Properties of Composite Gels in Applied Fields 154
 5.1 ER or MR Gels 154
 5.2 Polymer Processing 157
6 Application .. 158
 6.1 Membranes and Drug Delivery Systems 158
 6.2 Artificial Muscle 159
 6.3 Biomimetic Actuator 160
 6.4 Vibration Isolator 161

7 Conclusions .. 162

8 References .. 162