Environmental archaeologists are paying increasing attention to evidence of socioeconomic and ethnic distinctions in human societies (e.g., Crabtree 1990; Reitz and Honerkamp 1983; Reitz and Scarry 1985; Schulz and Gust 1983). Archaeologists combine ethnohistorical, archival, and archaeological records to reveal a more complete picture of life in the past than if any of those records were used alone.

Especially in culturally mixed societies, where people of several ethnic and economic groups resided together, material culture often provides few clues to the ethnicity of the site’s residents. Artifacts are indispensable for, among other things, dating, interpreting the activities that took place at the site, or determining the socioeconomic position, and sometimes even the gender, of a site’s occupants. The material culture available to a community however, was that of the dominant political and economic group, so ethnic differences among the users of those material items often are not apparent to archaeologists.

Food remains, however, provide not only evidence of socioeconomic position but also some of the strongest evidence for the ethnic identity of a site’s occupants. Food provides a means to emphasize or deemphasize one’s differences with others, i.e., a means of denoting ethnicity or religion. Culturally determined food preferences, and the degree of departure from them, provide important clues for interpreting sites.
This case study presents an example from a culturally heterogeneous colonial community, an 18th-century fur-trading settlement in what is now northern Michigan (Figure 18-1). Analysis of the food remains associated with several households reveals information about residents of diverse economic, ethnic, and religious groups that might remain invisible without environmental archaeology.

METHODS

In this study, 18th-century written records were used to predict the food preferences for each class and ethnic group at the settlement. These records include travel accounts, letters, military accounts, diaries, and cookbooks. The vertebrate and botanical assemblages from each household were analyzed and compared to the predicted models for the best fit. The comparative collections of the Illinois State Museum, Springfield, were used for faunal identification; Leonard W. Blake, Washington University, St. Louis, analyzed the botanical remains, and his reports are relied upon here (Blake 1981, 1982, 1985, 1987, 1990). Optimal recovery of animal and plant remains was possible because archaeological deposits were water-screened through 1/16-inch mesh. Flotation samples were taken from the floor deposits of the one undisturbed house interior. Minimum Number of Individuals (MNI) and biomass estimates

Figure 18-1. Map of the Great Lakes region of North America.