In this chapter we discuss some known constructions of unitals embedded in non-Desarguesian projective planes of square order, some of which are translation planes and some of which are not. As discussed in Section 4.1, ovoidal-Buekenhout-Metz unitals exist in any two-dimensional translation plane, and nonsingular-Buekenhout unitals exist in certain derivable two-dimensional translation planes. Here we discuss a wide variety of constructions, not just the Buekenhout techniques. We also show that it is possible for a Buekenhout unital to be embedded in two nonisomorphic planes.

5.1 Unitals in Hall Planes

The Hall plane of order q^2 can be obtained by deriving the Desarguesian plane $\text{PG}(2, q^2)$ of order q^2 as discussed in Section 3.2. We review the notation here. Let D be a derivation set of ℓ_∞ in $\text{PG}(2, q^2)$. That is, D is a Baer subline of $\ell_\infty \cong \text{PG}(1, q^2)$. The Hall plane, $\text{Hall}(q^2)$, has as points the points of $\text{PG}(2, q^2) \setminus D$ and $q + 1$ new points denoted by D'. The lines of $\text{Hall}(q^2)$ are of three types: lines of $\text{PG}(2, q^2)$ that meet ℓ_∞ in a point not in D; Baer subplanes of $\text{PG}(2, q^2)$ that contain D; the line at infinity, ℓ'_∞, which consists of the points of $\ell_\infty \setminus D$ and the points in D' (the latter points correspond to the new slope points). Incidence in $\text{Hall}(q^2)$ is inherited from $\text{PG}(2, q^2)$. Of course, we may choose ℓ_∞ to be any line of $\text{PG}(2, q^2)$.

Thus, as shown in Section 3.4.3, we may assume the following Bruck-Bose representation for the Hall plane. Let \mathcal{S} be a regular spread in the hyperplane Σ_∞ of $\text{PG}(4, q)$, so that $\mathcal{P}(\mathcal{S})$ is the Desarguesian plane $\text{PG}(2, q^2)$. Let \mathcal{R} be a regulus of \mathcal{S} with opposite regulus \mathcal{R}'. Then $\mathcal{S}' = (\mathcal{S} \setminus \mathcal{R}) \cup \mathcal{R}'$ is a spread of Σ_∞ that constructs the Hall plane; that is, $\mathcal{P}(\mathcal{S}') \cong \text{Hall}(q^2)$. Hence the Hall plane is a translation plane of dimension two over its kernel. This plane is isomorphic to the one coordinatized by the Hall quasifield. See [140] for more details on the Hall plane.
Recall that the only known unitals embedded in the Desarguesian plane are Buekenhout unitals, and the only nonsingular-Buekenhout unital embedded in the Desarguesian plane is the classical unital. If \(U \) is any unital embedded in \(\text{PG}(2, q^2) \), then when we derive this Desarguesian plane with respect to a derivation set \(D \) on \(\ell_\infty \), we obtain a corresponding set of points \(U' \) in \(\text{Hall}(q^2) \). To define \(U' \) more precisely, let \(\text{aff} U \) be the affine points of \(U \); that is, \(\text{aff} U = U \setminus \ell_\infty \) (that is, \(U \) minus the points of \(U \) that lie on \(\ell_\infty \)). Since the affine points of \(\text{PG}(2, q^2) \) are the same as the affine points of \(\text{Hall}(q^2) \), we have \(\text{aff} U' = \text{aff} U \) in \(\text{Hall}(q^2) \). We complete \(\text{aff} U' \) to a set \(U' \) in \(\text{Hall}(q^2) \) by adding the points on the line at infinity \(\ell'_\infty \) of \(\text{Hall}(q^2) \) which lie on a \(q \)-secant of \(\text{aff} U' \). We want to determine when the set \(U' \) is a unital in \(\text{Hall}(q^2) \).

We begin by focusing on the classical unital embedded in \(\text{PG}(2, q^2) \). Every chord of a classical unital is a Baer subline and so can serve as a derivation set. Hence there are five different ways to position the derivation set in relation to a classical unital \(U \) embedded in \(\text{PG}(2, q^2) \); these cases are illustrated in Figure 5.1.

![Fig. 5.1. Deriving the classical unital in \(\text{PG}(2, q^2) \)](image)

We first consider the case when \(U \) is secant to \(\ell_\infty \). Then \(U \) corresponds to a nonsingular quadric \(U \) in \(\text{PG}(4, q) \) that meets \(\Sigma_\infty \) in a hyperbolic quadric which is ruled by a regulus \(R \) of the regular spread \(S \). Of course, the opposite regulus \(R' \) also rules this hyperbolic quadric. Now \(D = U \cap \ell_\infty \) is a Baer subline, and thus is a derivation set. If we derive \(\text{PG}(2, q^2) \) with respect to \(D \), then we obtain the Hall plane which is constructed in the Bruck-Bose representation by the spread \(S' = (S \setminus R) \cup R' \). The points of \(U' \) in \(\text{Hall}(q^2) \) correspond to the same nonsingular quadric \(U \), which “meets” the spread \(S' \).