Exact Penalty in Constrained Optimization

2.1 Problems with a locally Lipschitzian constraint function

Let \((X, \| \cdot \|)\) be a Banach space and \((X^*, \| \cdot \|_*)\) its dual space. For each \(x \in X\), each \(x^* \in X^*\) and each \(r > 0\) set

\[B(x, r) = \{ y \in X : \| y - x \| \leq r \} , \quad B^*(x^*, r) = \{ l \in X^* : \| l - x^* \|_* \leq r \} . \]

Let \(f : X \to R^1 \) be a locally Lipschitzian function. For each \(x \in X \) let

\[f^0(x, h) = \limsup_{t \to 0^+, y \to x} \frac{f(y + th) - f(y)}{t}, \quad h \in X \]

be the Clarke generalized directional derivative of \(f \) at the point \(x \) [21], let

\[\partial f(x) = \{ l \in X^* : f^0(x, h) \geq l(h) \text{ for all } h \in X \} \]

be Clarke’s generalized gradient of \(f \) at \(x \) [21] and set

\[\Xi_f(x) = \inf \{ f^0(x, h) : h \in X \text{ and } ||h|| = 1 \} \]

[100].

A point \(x \in X \) is called a critical point of \(f \) if \(0 \in \partial f(x) \). It is not difficult to see that \(x \in X \) is a critical point of \(f \) if and only if \(\Xi_f(x) \geq 0 \).

A real number \(c \in R^1 \) is called a critical value of \(f \) if there is a critical point \(x \) of \(f \) such that \(f(x) = c \).

It is known that \(\partial(-f)(x) = -\partial f(x) \) for any \(x \in X \) (see Section 2.3 of [21]). This equality implies that \(x \in X \) is a critical point of \(f \) if and only if \(x \) is a critical point of \(-f\) and \(c \in R^1 \) is a critical value of \(f \) if and only if \(-c\) is a critical value of \(-f\).

For each function \(f : X \to R^1 \) set \(\inf(f) = \inf \{ f(z) : z \in X \} \). For each \(x \in X \) and each \(B \subset X \) put
\[d(x, B) = \inf\{||x - y|| : y \in B\}. \]

Let \(f : X \to \mathbb{R}^1 \) be a function which is Lipschitzian on all bounded subsets of \(X \) and which satisfies the following growth condition:

\[\lim_{||x|| \to \infty} f(x) = \infty. \quad (2.1) \]

It is easy to see that \(\inf\{f(z) : z \in X\} > -\infty. \)

Let \(g : X \to \mathbb{R}^1 \) be a locally Lipschitzian function which satisfies the following Palais–Smale (P-S) condition \([8, 76, 100]\):

If \(\{x_i\}_{i=1}^\infty \subset X \), the sequence \(\{g(x_i)\}_{i=1}^\infty \) is bounded and if

\[\lim \inf_{i \to \infty} \Xi g(x_i) \geq 0, \]

then there is a norm convergent subsequence of \(\{x_i\}_{i=1}^\infty \).

Let \(c \in \mathbb{R}^1 \) be such that \(g^{-1}(c) \) is nonempty.

We consider the constrained problems

minimize \(f(x) \) subject to \(x \in g^{-1}(c) \) \((P_e) \)

and

minimize \(f(x) \) subject to \(x \in g^{-1}((-\infty, c]) \). \((P_i) \)

We associate with these two problems the corresponding families of unconstrained minimization problems

minimize \(f(x) + \lambda|g(x) - c| \) subject to \(x \in X \) \((P_{\lambda e}) \)

and

minimize \(f(x) + \lambda \max\{g(x) - c, 0\} \) subject to \(x \in X \) \((P_{\lambda i}) \)

where \(\lambda > 0. \)

Set

\[\inf(f; c) = \inf\{f(z) : z \in g^{-1}(c)\}, \quad (2.2) \]

\[\inf(f; (-\infty, c]) = \inf\{f(z) : z \in X \text{ and } g(z) \leq c\}. \quad (2.3) \]

The next theorem is the main result of this section.

Theorem 2.1. Assume that the number \(c \) is not a critical value of the function \(g \). Then there exist numbers \(\lambda_0 > 0 \) and \(\lambda_1 > 0 \) such that for each positive number \(\epsilon \) there exists \(\delta \in (0, \epsilon) \) such that the following assertions hold:

1. For each \(\lambda > \lambda_0 \) and each \(x \in X \) which satisfies

\[f(x) + \lambda|g(x) - c| \leq \inf\{f(z) + \lambda|g(z) - c| : z \in X\} + \delta \]

there exists \(y \in g^{-1}(c) \) such that

\[||y - x|| \leq \epsilon \text{ and } f(y) \leq \inf(f; c) + \lambda_1 \epsilon. \]