The Fourier Transform

5.1 Definition and examples

For a given function f such that $\int_{-\infty}^{\infty} |f(x)| \, dx < \infty$, the Fourier transform of f is defined, for each real number ω, by

$$\mathcal{F} f(\omega) := \int_{-\infty}^{\infty} f(x) e^{-i\omega x} \, dx. \quad (5.1)$$

The idea behind this definition is that, for each value of ω, the value of $\mathcal{F} f(\omega)$ captures the component of f that has the frequency $\omega / (2\pi)$ (and period $2\pi / \omega$).

Example 5.1. The Fourier transform of a Gaussian. Let $f(x) = e^{-Ax^2}$, for some positive constant $A > 0$. Then we have

$$\mathcal{F} f(\omega) = \sqrt{\frac{\pi}{A}} e^{-\frac{\omega^2}{4A}}. \quad (5.2)$$

To prove this, we first need the following fact.

Lemma 5.2. For $A \neq 0$, we have $\int_{-\infty}^{\infty} e^{-Ax^2} \, dx = \sqrt{\frac{\pi}{A}}$.

Proof. Squaring the integral, we get

$$\left(\int_{-\infty}^{\infty} e^{-Ax^2} \, dx \right)^2 = \left(\int_{-\infty}^{\infty} e^{-Ax^2} \, dx \right) \left(\int_{-\infty}^{\infty} e^{-Ay^2} \, dy \right)$$

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-A(x^2+y^2)} \, dx \, dy \]

(polar coordinates) \[= \int_{\theta=0}^{2\pi} \int_{r=0}^{\infty} e^{-Ar^2} \, r \, dr \, d\theta \]
\[= \int_{\theta=0}^{2\pi} \left(\lim_{b \to \infty} \frac{1 - e^{-Ab^2}}{2A} \right) \, d\theta \]
\[= \int_{\theta=0}^{2\pi} \frac{1}{2A} \, d\theta \]
\[= \frac{\pi}{2A} \text{.} \]

Taking square roots proves the lemma. \[\square \]

Now to compute the Fourier transform for this example. For each \(\omega \),
\[\mathcal{F} f(\omega) = \int_{-\infty}^{\infty} e^{-Ax^2} e^{-i\omega x} \, dx \]
\[= \int_{-\infty}^{\infty} e^{-A(x^2+i\omega x/A)} \, dx \]
\[\text{(complete the square)} = \int_{-\infty}^{\infty} e^{-A(x^2+i\omega x/A+(i\omega/2A)^2)} e^{A(i\omega/2A)^2} \, dx \]
\[= e^{-\omega^2/4A} \int_{-\infty}^{\infty} e^{-A(x+i\omega/2A)^2} \, dx \]
\[= e^{-\omega^2/4A} \int_{-\infty}^{\infty} e^{-Au^2} \, du \text{ with } u = x + i\omega/2A \]
\[= \sqrt{\frac{\pi}{A}} e^{-\omega^2/4A} \text{ by the lemma.} \]

This establishes the result we were after. \[\square \]

Observe that if we take \(A = 1/2 \), then \(f(x) = e^{-x^2/2} \) and \(\mathcal{F} f(\omega) = \sqrt{2\pi} e^{-\omega^2/2} \), a constant multiple of \(f \) itself.

Additional examples are considered in the exercises. Let us look at some basic properties of the Fourier transform.

5.2 Properties and applications

Additivity. Because the integral of a sum of functions is equal to the sum of the integrals of the functions separately, it follows that
\[\mathcal{F}(f+g)(\omega) = \mathcal{F} f(\omega) + \mathcal{F} g(\omega), \] (5.3)