New Results on Weight-Two Motivic Cohomology

S. LICHTENBAUM*

Dedicated to A. Grothendieck on his 60th birthday

Introduction

Among Grothendieck’s manifold contributions to algebraic geometry is his emphasis on the search for a universal cohomology theory for algebraic varieties and a conjectured description of it in terms of motives [Ma]. Various authors have recently set out to describe the properties of and conjecturally define a cohomology theory for algebraic varieties, which has been baptized “motivic cohomology” by Beilinson, MacPherson, and Schechtman ([BMS],[Be],[Bl],[T],[L1],[L2]). It is hoped that this theory, when and if it is fully developed, will in some sense be universal and thus provide at least a partial response to Grothendieck’s question.

Meanwhile, it should be pointed out that to a greater or lesser extent, all of the currently proposed definitions are ad hoc and so ultimately unsatisfactory. Presumably there will one day be a natural definition of motivic cohomology and the present attempts will fall into place as calculating devices which explicitly realize this definition (much as the “bar-construction” definition of group cohomology realizes the more natural derived-functor definition).

Let X be a regular noetherian scheme. Beilinson ([Be]) and the author ([L1]) have proposed the existence for each non-negative integer n of certain complexes of sheaves $\Gamma(n, X)$ on X satisfying certain properties, or “axioms”. These complexes will be referred to as “motivic-cohomology

*The author would like to acknowledge his gratitude to the I.H.E.S. and Max Planck Institute, where much of this work was done. He was partially supported by a grant from the National Science Foundation.
complexes" and their hypercohomology as "motivic cohomology". Beilinson considered sheaves for the Zariski topology; the author used the étale site. We recall the étale site "axioms":

1. \(\Gamma(0, X) = \mathbb{Z} \), \(\Gamma(1, X) = G_m[-1] \).
2. For \(r \geq 1 \), \(\Gamma(r, X) \) is acyclic outside of \([1, r]\).
3. Let \(\alpha_* \) be the functor which assigns to every étale sheaf on \(X \) the associated Zariski sheaf. Then the Zariski sheaf \(R^{r+1} \alpha_* \Gamma(q, X) = 0 \).
4. Let \(n \) be a positive integer prime to all residue field characteristics of \(X \). Then there exists a distinguished triangle in the derived category

\[
\Gamma(r, X) \xrightarrow{n} \Gamma(r, X) \rightarrow \mu_n^\otimes r \rightarrow \Gamma(r, X)[1].
\]

5. There are product mappings \(\Gamma(r, X) \otimes \Gamma(s, X) \rightarrow \Gamma(r + s, X) \), satisfying the usual properties.

6. The cohomology sheaves \(\mathcal{H}^i(X, \Gamma(r, X)) \) are isomorphic to the étale sheaves \(\text{gr}^r K_{r-1}^q(X) \) up to torsion involving primes \(\leq (r - 1) \).

In our paper \([L2]\) we constructed a candidate for \(\Gamma(2, X) \). Namely, let \(A \) be a regular noetherian ring. Let \(W = \text{Spec} \ A[T] \), \(Z = \text{Spec} \ A[T]/T(T - 1) \).

Let \(B = \{b_1, b_2, \ldots, b_n\} \) be a finite sequence of "exceptional units" of \(A \), i.e., \(b_i \) and \(1 - b_i \) are both units for all \(i \). Let \(Y_B = \text{Spec} \ A[T]/\prod_{i=1}^n (T - b_i) \).

Then there is an exact sequence

\[
K_3(A) \rightarrow K_2(W - Y_B, Z) \xrightarrow{\varphi_{A,B}} K_1'(Y_B) \rightarrow K_2(A).
\]

Let \(C_{2,1}(A) = \lim_B K_2(W - Y_B, Z) \), \(C_{2,2}(A) = \lim_B K_1'(Y_B) \) and \(\varphi_A = \lim B \varphi_{A,B} \). Let \(\Gamma(2, A) \) be the two-term complex \((C_{2,1}(A) \xrightarrow{\varphi_A} C_{2,2}(A)) \) with \(C_{2,1}(A) \) in degree 1 and \(C_{2,2}(A) \) in degree 2.

Now if \(U = \text{Spec} \ A \) is an open affine étale over \(X \), the functors \(U \rightarrow C_{2,i}(A) \) for \(i = 1, 2 \) evidently determine a two-term complex of presheaves on \(X \) for the étale topology and we define \(\Gamma(2, X) \) to be the associated complex of sheaves.

Evidently \(\Gamma(2, X) \) satisfies Axiom 1. In our paper \([L2]\) Axiom 2 was proved up to 2-torsion and \(p \)-torsion if \(X \) was a scheme of finite type over a field of characteristic \(p \geq 0 \). In this paper we prove Axiom 2 up to 2-torsion. In \([L2]\) Axioms 3 and 5 were proven for \(X \) finite type over a field and Axiom 4 for all \(X \). Axiom 6 was proved only for \(X = \text{Spec} \ F \), a field, up to \(p \)-torsion. In this paper we prove Axiom 6 for fields, and prove it in general up to 2-torsion.