ON REPRESENTATIVES OF SUBSETS

P. Hall†.

1. Let a set S of mn things be divided into m classes of n things each in two distinct ways, (a) and (b); so that there are m (a)-classes and m (b)-classes. Then it is always possible to find a set R of m things of S which is at one and the same time a C.S.R. (= complete system of representatives) for the (a)-classes, and also a C.S.R. for the (b)-classes.

This remarkable result was originally obtained (in the form of a theorem about graphs) by D. König‡.

In the present note we are concerned with a slightly different problem, viz. with the problem of the existence of a C.D.R. (= complete system of distinct representatives) for a finite collection of (arbitrarily overlapping) subsets of any given set of things. The solution, Theorem 1, is very simple. From it may be deduced a general criterion, viz. Theorem 3, for the existence of a common C.S.R. for two distinct classifications of a given set; where it is not assumed, as in König's theorem, that all the classes have the same number of terms. König's theorem follows as an immediate corollary.

2. Given any set S and any finite system of subsets of S:

\[(1) \quad T_1, T_2, \ldots, T_m;\]

we are concerned with the question of the existence of a complete set of distinct representatives for the system (1); for short, a C.D.R. of (1).

By this we mean a set of m distinct elements of S:

\[(2) \quad a_1, a_2, \ldots, a_m;\]

such that

\[(3) \quad a_i \in T_i\]

(a_i belongs to T_i) for each $i = 1, 2, \ldots, m$. We may say, a_i represents T_i.

It is not necessary that the sets T_i shall be finite, nor that they should be distinct from one another. Accordingly, when we speak of a system of

† Received 23 April, 1934; read 26 April, 1934.
k of the sets (1), it is understood that k formally distinct sets are meant, not necessarily k actually distinct sets.

It is obvious that, if a C.D.R. of (1) does exist, then any k of the sets (1) must contain between them at least k elements of S. For otherwise it would be impossible to find distinct representatives for those k sets.

Our main result is to show that this obviously necessary condition is also sufficient. That is

Theorem 1. In order that a C.D.R. of (1) shall exist, it is sufficient that, for each $k = 1, 2, ..., m$, any selection of k of the sets (1) shall contain between them at least k elements of S.

If $A, B, ...$ are any subsets of S, then their *meet* (the set of all elements common to $A, B, ...$) will be written

$$A \cap B \cap ...$$

Their *join* (the set of all elements which lie in at least one of $A, B, ...$) will be written

$$A \cup B \cup ...$$

To prove Theorem 1, we need the following

Lemma. If (2) is any C.D.R. of (1), and if the meet of all the C.D.R. of (1) is the set $R = a_1, a_2, ..., a_\rho$ (possible 0, i.e. R the null set), then the ρ sets

$$T_1, T_2, ..., T_\rho$$

contain between them exactly ρ elements, viz. the elements of R.

R is, by definition, the set of all elements of S which occur as representatives of some T_i in every C.D.R. of (1).

To prove the lemma, let R' be the set of all elements a of S with the following property: there exists a sequence of suffixes

$$i, j, k, ..., l', l$$

such that

$$a \in T_i,$$

$$a_j \in T_j,$$

$$a_j \in T_k,$$

$$...$$

$$a_l \in T_l,$$

and, further,

$$l \leq \rho.$$