ON REPRESENTATIVES OF SUBSETS

P. HALL†.

1. Let a set S of mn things be divided into m classes of n things each in two distinct ways, (a) and (b); so that there are m (a)-classes and m (b)-classes. Then it is always possible to find a set R of m things of S which is at one and the same time a C.S.R. (= complete system of representatives) for the (a)-classes, and also a C.S.R. for the (b)-classes.

This remarkable result was originally obtained (in the form of a theorem about graphs) by D. König.‡

In the present note we are concerned with a slightly different problem, viz. with the problem of the existence of a C.D.R. (= complete system of distinct representatives) for a finite collection of (arbitrarily overlapping) subsets of any given set of things. The solution, Theorem 1, is very simple. From it may be deduced a general criterion, viz. Theorem 3, for the existence of a common C.S.R. for two distinct classifications of a given set; where it is not assumed, as in König’s theorem, that all the classes have the same number of terms. König’s theorem follows as an immediate corollary.

2. Given any set S and any finite system of subsets of S:

$$(1) \quad T_1, T_2, \ldots, T_m;$$

we are concerned with the question of the existence of a complete set of distinct representatives for the system (1); for short, a C.D.R. of (1).

By this we mean a set of m distinct elements of S:

$$(2) \quad a_1, a_2, \ldots, a_m;$$

such that

$$(3) \quad a_i \in T_i$$

(a_i belongs to T_i) for each $i = 1, 2, \ldots, m$. We may say, a_i represents T_i.

It is not necessary that the sets T_i shall be finite, nor that they should be distinct from one another. Accordingly, when we speak of a system of

† Received 23 April, 1934; read 26 April, 1934.

58
of the sets (1), it is understood that \(k \) \textit{formally} distinct sets are meant, not necessarily \(k \) actually distinct sets.

It is obvious that, if a C.D.R. of (1) does exist, then any \(k \) of the sets (1) must contain between them at least \(k \) elements of \(S \). For otherwise it would be impossible to find distinct representatives for those \(k \) sets.

Our main result is to show that this obviously necessary condition is also sufficient. That is

\textbf{Theorem 1.} \textit{In order that a C.D.R. of (1) shall exist, it is sufficient that, for each \(k = 1, 2, \ldots, m, \) any selection of \(k \) of the sets (1) shall contain between them at least \(k \) elements of \(S \).}

If \(A, B, \ldots \) are any subsets of \(S \), then their \textit{meet} (the set of all elements common to \(A, B, \ldots \)) will be written

\[A \wedge B \wedge \ldots. \]

Their \textit{join} (the set of all elements which lie in at least one of \(A, B, \ldots \)) will be written

\[A \vee B \vee \ldots. \]

To prove Theorem 1, we need the following

\textbf{Lemma.} \textit{If (2) is any C.D.R. of (1), and if the meet of all the C.D.R. of (1) is the set \(R = a_1, a_2, \ldots, a_\rho \) (\(\rho \) can be 0, i.e. \(R \) the null set), then the \(\rho \) sets

\[T_1, T_2, \ldots, T_\rho \]

contain between them exactly \(\rho \) elements, viz. the elements of \(R \).}

\(R \) is, by definition, the set of all elements of \(S \) which occur as representatives of some \(T_i \) in every C.D.R. of (1).

To prove the lemma, let \(R' \) be the set of all elements \(a \) of \(S \) with the following property: there exists a sequence of suffixes

\[i, j, k, \ldots, l', l \]

such that

\[a \in T_i, \]

\[a_j \in T_j, \]

\[a_j \in T_k, \]

\[\ldots \]

\[a_l \in T_l, \]

and, further,

\[l \leq \rho. \]