Chapter 11
Solvable and Nilpotent Groups

Classes of Groups
By a class \mathcal{K} of groups, we mean a subclass of the class of all groups with the following two properties:

1) \mathcal{K} contains a trivial group
2) \mathcal{K} is closed under isomorphism, that is,

$$G \in \mathcal{K} \quad \text{and} \quad H \cong G \implies H \in \mathcal{K}.$$

For example, the abelian groups form a class of groups. A group of class \mathcal{K} is called a \mathcal{K}-group and \mathcal{K}-group H that is a subgroup of a group G is called a \mathcal{K}-subgroup of G. A class \mathcal{K} is a trivial class if it contains only one-element groups.

Closure Properties
We will be interested in the following closure properties for a class \mathcal{K} of groups:

1) (Subgroup)

$$G \in \mathcal{K}, \quad H \leq G \implies H \in \mathcal{K}$$

2) (Intersection and Cointersection) For $H, K \leq G$,

$$H, K \in \mathcal{K} \implies H \cap K \in \mathcal{K}$$

$$\frac{G}{H \cap K} \in \mathcal{K} \implies \frac{G}{H} \in \mathcal{K}$$

3) (Quotient and Extension) For $N \leq G$,

$$G \in \mathcal{K} \implies G/N \in \mathcal{K}$$

$$N, G/N \in \mathcal{K} \implies G \in \mathcal{K}$$
4) **(Seminormal Join, Normal Join and Cojoin)** For \(H, K \leq G \),

- \(H, K \in \mathcal{K} \), one normal in \(G \) \(\Rightarrow \) \(HK \in \mathcal{K} \)
- \(H, K \in \mathcal{K} \), both normal in \(G \) \(\Rightarrow \) \(HK \in \mathcal{K} \)
- \(\frac{G}{H}, \frac{G}{K} \in \mathcal{K} \) \(\Rightarrow \) \(\frac{G}{HK} \in \mathcal{K} \)

5) **(Direct product)**

\[H, K \in \mathcal{K} \Rightarrow H \boxtimes K \in \mathcal{K} \]

These properties are not independent.

Theorem 11.1 The following implications hold for a class \(\mathcal{K} \) of groups:

1) subgroup \(\Rightarrow \) intersection
2) quotient \(\Rightarrow \) cojoin
3) seminormal join \(\Rightarrow \) normal join \(\Rightarrow \) direct product
4) subgroup and direct product \(\Rightarrow \) cointersection

Thus, a class that is closed under

- subgroup, quotient, seminormal join, extension

is closed under all nine properties above.

Proof. Part 1) is clear. For part 2), we have

\[\frac{G}{HK} \approx \frac{G}{H} / \frac{HK}{H} \in \mathcal{K} \]

For part 3), the direct product \(H \boxtimes K \) is the seminormal join of \(H \boxtimes \{1\} \) and \(\{1\} \boxtimes K \), each of which is in \(\mathcal{K} \) if \(H, K \in \mathcal{K} \). For part 4), if \(G/H, G/K \in \mathcal{K} \), then

\[\frac{G}{H \cap K} \leftrightarrow \frac{G}{H} \boxtimes \frac{G}{K} \in \mathcal{K} \]

via the map \(\sigma : g(H \cap K) \mapsto (gH, gK) \).

The following definition will prove very convenient.

Definition Let \(\mathcal{K} \) be a class of groups.

1) A \(\mathcal{K} \)-series is a series whose factor groups belong to the class \(\mathcal{K} \).
2) A \(\mathcal{K}_s \)-group is a group that has a \(\mathcal{K} \)-series and a \(\mathcal{K}_n \)-group is a group that has a normal \(\mathcal{K} \)-series.
3) The \(\mathcal{K}_s \)-class is the class of all \(\mathcal{K}_s \)-groups and the \(\mathcal{K}_n \)-class is the class of all \(\mathcal{K}_n \)-groups.

Our main interest is in the \(\mathcal{K}_s \) and \(\mathcal{K}_n \) classes in which \(\mathcal{K} \) is either the class of cyclic groups or the class of abelian groups. However, we are also interested in a class of groups that is not a \(\mathcal{K}_s \) or \(\mathcal{K}_n \) class, namely, the nilpotent groups.