Chapter 8

Convergence in Distribution

This chapter discusses the basic notions of convergence in distribution. Given a sequence of random variables, when do their distributions converge in a useful way to a limit?

In statisticians' language, given a random sample X_1, \ldots, X_n, the sample mean \bar{X}_n is CAN; that is, consistent and asymptotically normal. This means that \bar{X} has an approximately normal distribution as the sample size grows. What exactly does this mean?

8.1 Basic Definitions

Recall our notation that df stands for distribution function. For the time being, we will understand this to correspond to a probability measure on \mathbb{R}.

Recall that F is a df if

(i) $0 \leq F(x) \leq 1$;

(ii) F is non-decreasing;

(iii) $F(x+) = F(x) \forall x \in \mathbb{R}$, where

$$F(x+) = \lim_{\epsilon \downarrow 0} F(x + \epsilon);$$

that is, F is right continuous.
Also, remember the shorthand notation

\[F(\infty) := \lim_{y \to \infty} F(y) \]
\[F(-\infty) := \lim_{y \downarrow -\infty} F(y). \]

\(F \) is a probability distribution function if

\[F(-\infty) = 0, \quad F(+\infty) = 1. \]

In this case, \(F \) is proper or non-defective.

If \(F(x) \) is a df, set

\[C(F) = \{ x \in \mathbb{R} : F \text{ is continuous at } x \}. \]

A finite interval \(I \) with endpoints \(a < b \) is called an interval of continuity for \(F \) if both \(a, b \in C(F) \). We know that

\[(C(F))^c = \{ x : F \text{ is discontinuous at } x \} \]

is at most countable, since

\[\Lambda_n = \{ x : F([x]) = F(x) - F(x-) > \frac{1}{n} \} \]

has at most \(n \) elements (otherwise (i) is violated) and therefore

\[(C(F))^c = \bigcup_n \Lambda_n \]

is at most countable.

For an interval \(I = (a, b] \), we write, as usual, \(F(I) = F(b) - F(a) \). If \(a, b \in C(F) \), then \(F((a, b)) = F(a, b] \).

Lemma 8.1.1 A distribution function \(F(x) \) is determined on a dense set. Let \(D \) be dense in \(\mathbb{R} \). Suppose \(F_D(\cdot) \) is defined on \(D \) and satisfies the following:

(a) \(F_D(\cdot) \) is non-decreasing on \(D \).

(b) \(0 \leq F_D(x) \leq 1 \), for all \(x \in D \).

(c) \(\lim_{x \in D, x \to +\infty} F_D(x) = 1 \), \(\lim_{x \in D, x \to -\infty} F_D(x) = 0 \).

Define for all \(x \in \mathbb{R} \)

\[F(x) := \inf_{y \in D} F_D(y) = \lim_{y \uparrow x} F_D(y). \quad (8.1) \]

Then \(F \) is a right continuous probability df. Thus, any two right continuous df’s agreeing on a dense set will agree everywhere.