14 Mutual influence of B and Q

14.1 Principle

It is possible to calculate both the re-order level (B) and the size of the series (Q) separately. The B and Q so found are not optimal, but are a good approximation to the optimum solution.

Characteristic of the re-order level is the direct connexion between the risk of running out of stock (z) and the height of the order level. As B becomes higher (and therefore b, the safety stock, is increased), z becomes smaller. This relationship is determined by the cumulative frequency distribution of the demand during the delivery time.

With a high order level, a rather considerable stock will, in general, still be present upon the arrival of the replenishment order; thus the relevant stock costs are consequently high.

The connexion between these quantities is illustrated in Fig. 53. Since all costs must relate to a definite time unit it is not sufficient to know the value of z, but also the frequency with which a replenishment order is received (= the number of orders p.a.) must be known.

![Figure 53: The relationship of B to z and B to b.](image)

The costs of running out of stock p.a. per product are therefore

$$R \frac{D}{Q} z$$
The stock costs of the safety stock are equal to $b.c_i$; the change-over costs are $(D/Q)F$ (all per time unit, in this case p.a.)

$$C_{tot} = z(D/Q)R + F(D/Q) + \frac{1}{2}c_i Q + c_i b$$

It appears from further examination of this equation that both b and Q affect the total costs which play a part in the system.

Moreover, by increasing Q and decreasing b (or the reverse) c_{tot} can remain constant if an optimum system has still to be attained. A further study has shown what the relationship is between B and Q for constant total costs.

14.2 The relationship between B and Q

It is possible to obtain, with the assistance of the equation mentioned above, a quantitative insight into the relationship between B and Q. A clear picture is obtained if this result is presented graphically. It is, however, necessary to make a three-dimensional drawing because it has already been shown that C_{tot} is simultaneously dependent upon B and Q.

It can be calculated for any single case just how large C_{tot} is at certain values of B and Q. It is not possible to give a clear picture of this in two dimensions, however, and, therefore, some horizontal cross sections will be taken.

Fig. 54. The iso-cost lines for a (B, Q)-system.

A = The point with the lowest total variable costs (c^*_{tot}).

The line of intersection formed by the cost plane and a horizontal plane is a line with equal total costs (iso-cost line). The lowest total costs are found at point A; the optimum size of the replenishment batch and the order level can