This chapter continues the application of the basic arbitrage theorem in a many-period setting to value call and put options, and thus to value all derivative securities.

CALLS AND PUTS

We continue to consider contracts on a security whose payoff occurs on date s only, the price of which security on date t is denoted by p_t. We assume that the security is a limited liability security, so that p_t is positive on each date t.

A European call option (with maturity s and positive exercise price q), or a call, is a contract which gives its holder the right but not the obligation to buy the security on date s for the exercise price q. Similarly, a put gives its holder the right to sell the security on date s at the price q. The right involved in a call will be exercised if and only if the security price on date s exceeds the exercise price, that is, if and only if

$$p_s > q,$$

while the right involved in a put will be exercised if and only if

$$p_s < q.$$

Equivalently, then, the call is a security which specifies the receipt on date s of the amount $p_s - q$ if p_s exceeds q and a zero receipt otherwise, that is, which specifies the payoff

$$\max(p_s - q, 0)$$
on date s. Similarly, the put is a security which specifies the payoff

$$\max(q - p_s, 0)$$

on date s. The relation between the payoff of a call c_s and the security price at maturity p_s is illustrated in Figure 6.1; the corresponding relation for a put is illustrated in Figure 6.2.

We assume that there is a bond with unit payoff on date s, and also that on each date t there is a bill with unit payoff on date $t + 1$ (on date s the bill is 'instantaneous', its price being unity). Bond, bill, call, and put prices on date t are denoted by $b_t, a_t, c_t,$ and d_t respectively.

Applying the martingale property to the call on date 0 gives

$$c_0 = \hat{E}\delta\max(p_s - q, 0) = \hat{E}\max(\delta p_s - \delta q, 0)$$

where δ is the relevant discount factor and \hat{E} the martingale expectation operator, so that

$$c_0 + \hat{E}\delta q = \hat{E}\max(\delta p_s, \delta q).$$

Applying the martingale property to the put gives

$$d_0 = \hat{E}\delta\max(q - p_s, 0) = \hat{E}\max(\delta q - \delta p_s, 0),$$

so that

$$d_0 + \hat{E}\delta p_s = \hat{E}\max(\delta q, \delta p_s).$$

It follows that

$$c_0 + \hat{E}\delta q = c_0 + q\hat{E}\delta = d_0 + \hat{E}\delta p_s.$$

Now applying the martingale property to the bond and the security gives

$$b_0 = \hat{E}\delta$$