5 Compression Ignition Engines

5.1 Introduction

Satisfactory operation of compression ignition engines depends on proper control of the air motion and fuel injection. The ideal combustion system should have a high output (bmep), high efficiency, rapid combustion, a clean exhaust and be silent. To some extent these are conflicting requirements; for instance, engine output is directly limited by smoke levels. There are two main classes of combustion chamber: those with direct injection (DI) into the main chamber, figure 5.1, and those with indirect injection (ID), figure 5.5, into some form of divided chamber. The fuel injection system cannot be designed in isolation since satisfactory combustion depends on adequate mixing of the fuel and air. Direct injection engines have inherently less air motion than indirect injection engines and, to compensate, high injection pressures (up to 1000 bar) are used with multiple-hole nozzles. Even so, the speed range is more restricted than for indirect injection engines. Injection requirements for indirect injection engines are less demanding; single-hole injectors with pressures of about 300 bar can be used.

There are two types of injector pump for multi-cylinder engines, either in-line or rotary. The rotary pumps are cheaper, but the limited injection pressure makes them more suited to indirect injection engines.

The minimum useful cylinder volume for a compression ignition engine is about 400 cm3, otherwise the surface-to-volume ratio becomes disadvantageous for the normal compression ratios. The combustion process is also slower than in spark ignition engines and the combined effect is that maximum speeds of compression ignition engines are much less than those of spark ignition engines. Since speed cannot be raised, the output of compression ignition engines is most effectively increased by turbocharg-
ing. The additional benefits of turbocharging are improvements in fuel economy, and a reduction in the weight per unit output.

The compression ratio of turbocharged engines has to be reduced, in order to restrict the peak cylinder pressure; the compression ratio is typically in the range 12-24:1. The actual value is usually determined by the cold starting requirements, and the compression ratio is often higher than optimum for either economy or power. Another compromise is the fuel injection pattern. For good cold starting the fuel should be injected into the air, although very often it is directed against a combustion chamber wall to improve combustion control.

There are many different combustion chambers designed for different sizes of engine and different speeds, though inevitably there are many similarities. Very often it will be the application that governs the type of engine adopted. For automotive applications a good power-to-weight ratio is needed and some sacrifice to economy is accepted by using a high-speed engine. For marine or large industrial applications size and weight will matter less, and a large slow-running engine can be used with excellent fuel economy.

All combustion chambers should be designed to minimise heat transfer. This does not of itself significantly improve the engine performance, but it will reduce ignition delay. Also, in a turbocharged engine a higher exhaust temperature will enable more work to be extracted by the exhaust turbine. The so-called adiabatic engine, which minimises (not eliminates) heat losses, uses ceramic materials, and will have higher exhaust temperatures.

Another improvement in efficiency is claimed for the injection of water/fuel emulsions; for example, see Katsoulakos (1983). By using an emulsion containing up to 10 per cent water, improvements in economy of 5–8 per cent are reported. Improvements are not universal, and it has been suggested that they occur only in engines in which the air/fuel mixing has not been optimised. For a given quantity of fuel, a fuel emulsion will have greater momentum and this could lead to better air/fuel mixing. An additional mechanism is that when the small drops of water in the fuel droplets evaporate, they do so explosively and break up the fuel droplet. However, the preparation of a fuel emulsion is expensive and it can lead to problems in the fuel injection equipment. If a fuel emulsion made with untreated water is stored, bacterial growth occurs. Fuel emulsions should reduce NO\textsubscript{x} emissions since the evaporation and subsequent dissociation of water reduce the peak temperature.

As in spark ignition engines, NO\textsubscript{x} emissions can be reduced by exhaust gas recirculation since this lowers the mean cylinder temperature. Alternatively NO\textsubscript{x} emissions can be reduced by retarded injection. However this has an adverse effect on output, economy and emissions of unburnt hydrocarbons and smoke.