TWO PARFIT PUZZLES

1. THE REPUGNANT CONCLUSION

Under the Total View one possible outcome is better than another if and only if it contains more happiness. If the best way to increase total happiness is to greatly increase the number of people while greatly reducing their average happiness, then the Total View must advocate population growth. Derek Parfit uses this feature of the Total View to generate the following conclusion (1984, p. 388).

The Repugnant Conclusion. Under the Total View, for any possible population of at least ten billion people, all with a very high quality of life, there must be some much larger imaginable population whose existence, if other things are equal, would be better, even though its members have lives that are barely worth living.

Begin with a world where ten billion people all have extremely good lives. Call it A. Imagine a second world, with twice as many people each of whom is more than half as happy as the people in A. Call this new world B. Total utility in B exceeds that in A. Now repeat this process until we reach a world where a vast population each have a life which is barely worth living. Call this world Z. As each step increases total utility, Z must be better than A.

The Repugnant Conclusion has a structure common to many objections to Consequentialism. We are presented with a conflict between a particular Consequentialist theory of value, telling us that one outcome is better than another, and a strong intuition to the contrary. The intuition itself is often simply taken as a datum. This is a mistake. Intuitions typically rest on unstated theoretical presuppositions, especially theories of well-being. To take the intuition seriously is to take those views seriously. In the Repugnant Conclusion, our intuitions presuppose a certain kind of difference between life in A and life in Z.

Once we tease out the implications of our intuitive reaction to the repugnant conclusion, we find that the conclusion is only troubling when it fits into a general pattern common to many alleged paradoxes in contemporary moral philosophy. I shall dub this structure the Parfit puzzle, as we shall see that Parfit's own discussion of Reductionist accounts of personal identity fits the same pattern. This raises the possibility that the debate over Parfit's Reductionism may provide a solution to the repugnant conclusion.
2. THE PARFIT PUZZLE

Underlying each Parfit Puzzle is a Sorites-style argument with the following form. We first imagine an ordered set of entities: E₁, E₂, ..., Eₙ. There are two possible differences between entities: step-differences (S) and kind-differences (K). A sorites relationship exists between K and S so long as the following five claims are all true. (Where i, j, and k are variables ranging over natural numbers from 1 through n.)

1. For any j and any k, if there is an S-difference between Eᵢ and Eⱼ, then Eᵢ and Eⱼ are K-indistinguishable. (i.e., Eᵢ is K if and only if Eⱼ is K)
2. For all i, there is an S-difference between Eᵢ and Eᵢ₊₁.
3. For all i, Eᵢ is K-indistinguishable from Eᵢ₊₁. (From (1) and (2).)
4. E₁ is K.
5. Eₙ is not K.

In a simple sorites argument, (3) and (4) are used to prove that Eₙ is K, thus contradicting (5). Consider the classic sorites argument, where we start with a heap of beans. Removing a single bean cannot turn our heap into a non-heap. We keep removing beans one at a time until we have one left, and then remove that one bean. If removing a single bean cannot deprive us of a heap, then we still have a heap of beans, even though we have no beans. We can imagine a series of heaps from E₀ (zero beans) to Eₙ (n beans). For all i between 0 and n-1, there is an S-difference between Eᵢ and Eᵢ₊₁. Eᵢ and Eᵢ₊₁ are thus K-indistinguishable: either both are heaps or neither is. Yet Eₙ is a heap and E₀ is not a heap.

Parfit puzzles are more sophisticated than the simple sorites argument. They utilize the sorites relationship between K and S to undermine the moral pretensions of K. In particular, a Parfit puzzle arises when K has a strong intuitive claim to a moral significance of an altogether superior kind to S, but the sorites relationship between K and S undermines that claim.

One common Parfit puzzle concerns moral significance. Suppose our moral theory holds that “x is K” is a necessary and sufficient condition for x to be morally significant. We discover that a sorites relationship exists between K and some S, where an S-difference is clearly not sufficient for a change in moral significance. We can then construct a spectrum of entities (E₁ to Eₙ), such that there is no change in moral significance at any particular stage, but there is a difference in moral significance between the first and last members of the series (E₁ and Eₙ).

This puzzle arises most starkly when we are faced by an actual continuum of cases, with a clearly morally significant entity at one end and an entity at the other end clearly lacking moral significance, and we must determine exactly when in the continuum entities acquire moral significance. The most obvious practical case is abortion. Imagine the progression from a sperm and egg pair, through fertilization, gestation, birth, and subsequent development, to an adult human being. Two things seem equally obvious: that there is a stark difference in moral significance between the two endpoints, and that there is no clear point where this additional significance suddenly appears.1