Chapter 6

The Oxidation of Ammonia as an Energy Source in Bacteria

Alan B. Hooper¹¹, David Arciero¹, David Bergmann² and Michael P. Hendrich³
¹Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, MN 55108, U.S.A. ²College of Arts and Sciences, Black Hills State University, Spearfish, SD 57799-9114 U.S.A. ³Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213 U.S.A.

Summary ... 122
I. Introduction: Metabolism of Nitrosononas .. 122
II. Summary of the Oxidative Pathways: Ammonia Monoxygenase, Hydroxylamine Oxidoreductase and the Passage of Electrons to Ubiquinone .. 123
 A. An Over–view of the Process .. 123
 B. Membrane Systems of Nitrosononas ... 124
 C. The N-oxidation Pathway ... 124
 D. The 'Traditional' Redox and Energy-Transducing Pathways of Nitrosononas 124
 1. Cytochrome bc1 ... 125
 2. Cytochrome c₃ .. 125
 3. CuA Terminal Oxidase ... 125
 4. Control and Integration of Electron Transport Pathways ... 125
E. Minor Electron Transfer Pathways to Terminal Electron Acceptors 125
 1. Oxidation of Alternate Substrates by AMO .. 125
 2. Alternate Oxidases ... 125
 3. Denitrification .. 126
 4. Possible Bypass of the Cyt bc Complex ... 126
 5. Molar Ratio of Redox Components ... 127
F. Other redox proteins ... 127
 1. Nitrosocyanin ... 127
 2. Cytochrome P₄₅₀ .. 127
 3. Diheme Cytochrome c Peroxidase ... 127
G. Proton Gradient ... 127
 1. Generation of the Gradient ... 127
 2. Utilization of the Gradient .. 129
 a. ATP Synthase .. 129
 b. Reduction of Pyridine Nucleotides ... 129
III. Hydroxylamine Oxidoreductase .. 129
 A. Overview of Reaction .. 129
 B. Overview of the Structure of HAO ... 130
 1. Chemical Characterization .. 130
 2. The Crystal Structure of HAO .. 130
 3. Possible Path of Electrons from Heme P₄₅₀ .. 131
 4. Electronic and Redox Properties of the Hemes ... 132
 5. Speculation Regarding the Mechanism of Catalysis .. 133
 a. Binding and Deprotonation of Substrate ... 133
 b. Electron Removal .. 134
 c. The Reaction of HAO is Unique for a Catalytic Heme ... 135
 d. Reactivity of the Active Site of HAO ... 135

Author for correspondence, email: hooper@cbs.umn.edu

IV. Transfer of Electrons from HAO to Ubiquinone ... 136
 A. Cytochrome c554 .. 136
 B. Cytochrome c552: A Putative Cytochrome c554 Ubiquinone Reductase 137
V. Speculation on the Evolution of the Hydroxylamino-Oxidizing System 137
VI. Enzymology of Ammonia Monoxygenase ... 140
 A. Structure of AMO Subunits ... 140
 B. Mechanism of Turnover of AMO .. 140
 1. General Nature of the Enzyme ... 140
 2. Speculation on the Geometry of the Active Site .. 141
 3. Evidence for a Radical Rebound Mechanism ... 142
 4. Comparison of the Reactivity of pMMO and AMO with Ammonia and Methane 142
VII. Anaerobic Respiration by Autotrophic Nitrifiers .. 142
VIII. Anaerobic Oxidation of Ammonia (ANAMMOX) ... 143
IX. Heterotrophic Nitrification ... 143
Acknowledgments ... 144
References ... 144

Summary

This chapter deals with the oxidation of ammonia (NH₃ + 1.5 O₂ → HNO₂ + H₂O) as a source of reducing power in the chemolithotrophic bacterium _Nitrosomonas europaea_. Direct knowledge of the enzymes involved together with the sequence of the genome reveal core elements of a redox system unique to oxidation of ammonia to nitrite which feeds into a more traditional bacterial electron transport/terminal oxidase system. The apparently low stoichiometry of protons translocated per ammonia oxidized hints at the basis of the low growth yields of this bacterium. Remarkably, the putative complex of hydroxylamine oxidoreductase (HAO), cytochrome c₅₅₄ (Cyt c₅₅₄) and the membrane cytochrome c₅₅₅₂ (Cyt c₅₅₅₂), which catalyzes the oxidation of a molecule of hydroxylamine and transfer of four electrons to membrane ubiquinone would involve 16 c-hemes per catalytic site or 48 hemes for the hypothetical aggregate containing the trimeric HAO. The dehydrogenation catalyzed at the novel catalytic heme (heme P460) is unique by comparison with other known catalytic hemes which bind substrate to the iron; in all others electrons enter the system and reduce the substrate whereas the reverse is true with HAO. This mode of catalysis may be functionally related to a cross link which is found only in HAO; a covalent bond between a methyne carbon of heme P460 and a ring carbon of a peptide tyrosine. The dramatic crystal structures of HAO and Cyt c₅₅₄ have provided insights into catalysis and electron transfer as well as illustrating evolutionary relationships which are not reflected in homology of amino acid sequence. Considering their relative spatial arrangement, the 4 hemes of Cyt c₅₅₄ can be precisely superimposed with 4 of the hemes of HAO. Evidence suggests that they have a common ancestor and have preserved heme configurations even when sequence homology had been lost. The novel anaerobic oxidation of ammonia (NH₃ + HNO₂ → N₂ + H₂O) by a planctomycete bacterium and the oxidation of ammonia to nitrite in heterotrophic bacteria are described more briefly.

I. Introduction: Metabolism of Nitrosomonas

This chapter deals with the biochemistry of the oxidation of ammonia as a source of reducing power for energy transduction and biosynthesis in bacteria. It will focus on the aerobic oxidation of ammonia to nitrite (NH₃ + 1.5 O₂ → HNO₃ + H₂O) in the chemolithotrophic bacterium _Nitrosomonas eu-