ON THE ADEQUACY OF A TYPE ONTOLOGY

In this note I shall try to answer two counter-arguments (the first of which consists of two separate objections) against one of the theses advocated in my 'Four Ontologies'. The thesis is that an ontology of types (types, on my view, include masses) may be self-sufficient and quite adequate for all our descriptive and theoretical needs. Types (and, thus, masses), I argued, are fully real particulars: The Polar Bear, The Taxpayer, Man, Dog, Oil, Gold, Sand, Blue Stuff, etc. are neither universals, nor classes, but material particulars which are continuous (i.e., repeatable) in both time and space. Just as Mr Jones (Mr Jones himself, not a part of him) may be found to exist at two distinct temporal points, so can gold (gold itself, not a part of it) be found to exist at two distinct spatial points. Jones (a temporally continuous thing) is bald now and nonbald then; Man (a spatially continuous type) is bald here and nonbald there. Exactly as we say (when we speak about masses) that Sugar is expensive here, but cheap there, we can say that Cat is running here, and simultaneously is asleep over there. Another analogy to the logic of types is to be found in the logic of trans-world (e.g., Kripkean) individuals: the same individual, Jones, is a tall sailor in W_1 and a short lawyer in W_2. Similarly the same particular, Woman, is servile in the east and rebellious in the west.

Now, the objections. It was claimed that, contrary to what I have just said, an ontology of types can never be self-sufficient; it must presuppose the ontology of ordinary, spatially bounded, things. The most fundamental concept of the ontology of things, which is completely missing in the ontology of types (or masses) is the concept of the possibility of a numerical multiplicity of qualitatively identical particulars. E.g., while the ontology of types recognizes only entities like Chair or Rabbit, the ontology of things can countenance many numerically distinct chairs or rabbits. But (the objector continues), without this notion of pure numerical multiplicity the type-language cannot get off the ground.

In explaining how Man (or Oil) can be both e.g. black and non-

black I have relied on the notion of a multiplicity of spatio-temporal locations. I have argued that sentences which simply attribute properties to types are not well formed. Instead, a sentence attributing a property to a type must consist of a predicate alleged to be true of the type in question and an expression denoting an ordered pair, the first member of which is a type and the second a spatiotemporal point or region at which the said type is supposed to satisfy the said predicate. But spatiotemporal points and regions are not types. When we say that this spatiotemporal point is non-identical with that spatiotemporal point we do not claim that they are qualitatively different, but rather that they are numerically different. If our ontology is limited to types only, the sentence 'Black (Man, \(P_1 T_1 \))', e.g., is unavailable to us, because \('P_1 T_1 ' \) does not name a type. At best, we can say 'Black (Man, The Spatiotemporal Location)'. But this expression is of course completely unhelpful. It results in the same contradiction we intended to avoid, i.e., that \(x \) is both \(F \) and not \(F \) simpliciter.

At first it seems that one can get around this objection by denying the premise that spatiotemporal locations are not qualitatively distinct and hence do not constitute distinct types. E.g., if a Newtonian absolute space is postulated, one may perhaps claim that spatiotemporal locations are, as such, qualitatively distinct. I must agree, however, that this answer is very poor indeed. We have no idea what property the location \(P_1 T_1 \) as such can have that another location, \(P_2 T_2 \), has not. On the other hand it seems that we cannot use such differences as the presence at these locations (or at certain distances from these locations) of certain particulars, since ‘The location at which Water is present’ would not characterize any location; in a type-ontology, Water (itself) may be present at many locations.

It may be suggested that Being \(P_1 T_1 \) is itself a quality of \(P_1 T_1 \) only, and hence \(P_1 T_1 \) is the type, The \(P_1 T_1 \). But, again, this ploy seems quite dishonest. Being \(a \), I think, is not a property which can, all by itself, differentiate \(a \) from the otherwise exactly identical \(b \). The ontology of Types is precisely the ontology which results from a full endorsement of the so-called ‘Leibniz Law’. One cannot, then, have one’s cake and eat it too: one cannot first adopt a policy of recognizing only qualitative differences as entity-distinguishing factors, and then recognize a difference between entities (i.e., \(=a \) and \(\neq a \) not arrived at