CHAPTER 2

MOLECULAR ASPECTS OF OOCYTE VITELLOGENESIS IN FISH

PATRICK J. BABIN¹, OLIANA CARNEVALI², ESTHER LUBZENS³, AND WOLFGANG J. SCHNEIDER⁴

¹Génomique et Physiologie des Poissons, Université Bordeaux 1, UMR NuAGe, 33405 Talence, France
²Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche 60131, Ancona, Italy
³National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa 31080, Israel
⁴Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria

1. Introduction .. 40
2. The Vitellogenin Gene Family and the Structure and Evolution, and Expression of Precursor Proteins .. 41
 2.1. The Large Lipid Transfer Protein (LLTP) Superfamily 41
 2.2. Domain Architecture and Conserved Sequence
 Motifs of Vertebrate VTG ... 42
 2.3. VTG Gene Clusters and Their Expression in Fish 43
 2.3.1. Vtg genes and their expression sites 43
 2.3.2. Hormonal regulation of Vtg synthesis 44
 2.4. VTG Posttranslational Modifications and
 the Ligand-Binding Domain .. 46
3. The Low-Density Lipoprotein Receptor Gene Family:
 Evolution in Mammals and Oviparous Species 47
 3.1. The Supergene Family of LDL Receptor Relatives (LRs) 48
 3.1.1. The prototype LR: The human low-density
 lipoprotein receptor and relationships between
 structure and function of the LDL receptor 48
 3.1.2. An evolving family .. 51
 3.1.3. The largest family members 51
 3.1.4. The so-called VLDL receptors 52

© 2007 Springer.
1. INTRODUCTION

The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules. Oocyte growth, particularly in oviparous species, is characterized by the intense deposition of products; e.g. RNAs, proteins (including growth and transcription factors), lipids, vitamins, and hormones. The deposit and storage occur in teleost fish species in a physiologically arrested cell at the G2/M border in first meiotic prophase (see Chapter 1). Whereas the nucleus remains in the diplotene stage, maternal RNAs are produced endogenously by the oocyte (see Chapters 3 and 6). As in other oviparous vertebrates, oocyte growth occurs by the uptake of plasma egg yolk precursor proteins (EYPP), predominantly vitellogenins (Vtgs) and putatively very low-density lipoprotein (VLDL) constituents during the vitellogenesis phase of oogenesis (for reviews see: Wallace, 1985; Mommsen and Walsh, 1988; Wallaert and Babin, 1994; Tyler and Sumpter, 1996; Wiegand, 1996). In females, these lipoproteins are synthesized in the liver, mainly under 17β-estradiol (E2) control (Wallaert and Babin, 1992), and