Chapter 3
The Mitochondrial Death Pathway

Anas Chalah and Roya Khosravi-Far*

Abstract Mitochondria have long been known to be critical for cell survival due to their role in energy metabolism. However, not until the mid-1990s did it become evident that mitochondria are also active participants in programmed cell death (PCD). This chapter focuses mainly on the role the mitochondria in mammalian cell death and cancer progression and therapy.

Keywords apoptosis, death receptors, mitochondria, bid, membranes, phospholipases, cardiolipin

1 Introduction

Apoptosis, or programmed cell death (PCD), is an evolutionarily conserved mechanism for the selective removal of aging, damaged or otherwise unwanted cells (Abe et al., 2000; Degli Esposti, 1999; Lawen, 2003; Ozoren and El-Deiry, 2003; Peter and Krammer, 1998; Strasser et al., 2000; Thorburn, 2004). It is an essential component of many normal physiological processes such as embryogenesis, normal tissue development, and the immune response (Vaux and Korsmeyer, 1999). Thus, regulation of apoptosis is critical for tissue homeostasis and its deregulation can lead to a variety of pathological conditions including carcinogenesis and chemoresistance (Burns and El-Deiry, 2003; Daniel et al., 2001; Green and Evan, 2002; Ozoren and El-Deiry, 2003; Sheikh and Huang, 2004; Thompson, 1995; Zornig et al., 2001).

Apoptosis is mediated primarily through the activation of specific proteases called caspases (cysteinyl, aspartate-specific proteases) (Algeciras-Schimnich et al., 2002;
Ozoren and El-Deiry, 2003; Salvesen and Dixit, 1997; Stegh and Peter, 2001; Thorburn, 2004). Caspases are effectors of cell suicide and cleave multiple substrates, leading to biochemical and morphological changes that are characteristic of apoptotic cells (Abe et al., 2000; Strasser et al., 2000). These alterations include: mitochondrial outer membrane permeabilization; cell membrane remodeling and blebbing; exposure of phosphatidylserine (PS) at the external surface of the cell; cell shrinkage with cytoskeletal rearrangements; nuclear condensation; and DNA fragmentation (Ashkenazi and Dixit, 1999; Green and Evan, 2002; Lawen, 2003; Peter and Krammer, 2003; Schulze-Osthoff et al., 1998; Thorburn, 2004). These morphological changes culminate in the formation of apoptotic bodies that are normally eliminated by phagocytosis (Geske and Gerschenson, 2001; Wallach, 1997). In mammalian systems, the extrinsic death receptor pathway and the intrinsic mitochondrial pathway are the two major signaling systems that result in the activation of the executioner/effecter caspases and the consequent demise of the cell (Abe et al., 2000; Ozoren and El-Deiry, 2003; Peter and Krammer, 2003; Strasser et al., 2000; Thorburn, 2004). In many cell types, including cancer cells, activation of the extrinsic pathway also engages the mitochondrial pathway for full execution of cell death (Jaattela, 2004; Khosravi-Far and Esposti, 2004; Kroemer, 2003; Newmeyer and Ferguson-Miller, 2003; Thorburn, 2004). Thus, many apoptotic signals merge at the mitochondria, and thus mitochondria have been termed “gatekeepers” of the apoptotic machinery (Jaattela, 2004; Khosravi-Far and Esposti, 2004; Kroemer, 2003; Newmeyer and Ferguson-Miller, 2003; Thorburn, 2004).

As gatekeepers, the proteins comprising the intrinsic mitochondrial pathway are the major mediators of the cytotoxic effects of many chemotherapeutic agents and radiation therapy (Brenner et al., 2003; Costantini et al., 2000; Debatin et al., 2002; Hersey and Zhang, 2003). Cancer cells often evade this apoptosis and develop chemoresistance and radioresistance. Indeed, disruption of the mitochondrial apoptotic machinery has been observed in many tumors (Daniel et al., 2001; Morisaki and Katano, 2003). It is also likely that disruption of the mitochondrial machinery or mutations in the mitochondrial DNA could play a role in cancer initiation. Because of the central role of mitochondria in these processes, various components of the mitochondrial machinery can be targets for novel therapeutic strategies.

2 The Mitochondrial Pathway of Apoptosis

Mitochondria are thought to be the primary organelles involved in mediating most apoptotic pathways in mammalian cells (Green and Kroemer, 2004; Kroemer, 2003; Newmeyer and Ferguson-Miller, 2003; Ravagnan et al., 2002; Sorice et al., 2004; Zamzami and Kroemer, 2001). Mitochondria are engaged via the intrinsic pathway of cell death, which can be initiated by a variety of stress stimuli, including ultraviolet (UV) radiation, γ-irradiation, heat, DNA damage, the actions of some oncoproteins and tumor suppressor genes (i.e., P53), viral virulence factors, and most chemotherapeutic agents (Fig. 3.1) (Kroemer, 2003). These diverse forms