Chapter 19
Fatigue of Welded Joints

19.1 Introduction
Welding of metals is applied on a very wide scale, especially for building up structures by welding of steel plates and girders of different cross sections (I-beams, U-beams, angle beams). Welding provides many structural design options which cannot be simply realized with other production techniques. Major applications are found in bridges, cranes, ships, offshore structures, pressure vessels, buildings and various types of spatial frames.

Welding as a production technique is associated with various problems, which are characteristic for welding only. As a result, the subject “welding” became practically a discipline on its own as illustrated by the existence of welding institutes and organizations, standards and design codes, journals, and an extensive literature. Within the welding discipline, much attention has been paid to problems related to different welding techniques known under general names as: arc welding, gas welding, electron beam welding, laser welding, resistance spot welding, friction welding, and more recently stir friction welding. Welded joint designs and notch effects of welds are typical for welded structures. Welded joints are also known for a number of characteristic weld defects. These defects have created new issues for
non-destructive inspections (NDI), which have stimulated developments of X-ray and ultrasonic equipment. Moreover, fatigue properties of welded joints can exhibit considerable scatter because of a variety of imperfections of these joints. As a consequence, fatigue of welded joints has always been a matter of concern, but good welding practice can be specified for fatigue critical structures including non-destructive inspections of all welds.

The present section does not give a full survey of fatigue of welded joints, but instructive books have been published, e.g. by Gurney [1], Madox [2], Radai [3] and Lancaster [4]. The present text is a brief and elementary account of fatigue problems of welded joints which are related to aspects of geometries of welded joints and fatigue lives. Welding techniques and metallurgy problems are not covered. It should be understood that welding is not attractive for materials with a high static strength obtained by a heat treatment. The welding process will then destroy the heat treatment. Also, welding of thin sheet material is not popular in view of geometric distortions due to the heat flux. However, spot welding of thin sheets can be an attractive production technique for the industry.

19.2 Some general aspects

Figure 19.1 shows a sketch of a welded butt joint between two plates. The joint is welded from one side only. A few terms are recalled in this figure, and some defects are indicated. Under a cyclic tension load, the root failure (lack of penetration) is a most serious one. It can occur over a considerable distance and the defect is similar to a surface crack. The undercut at the weld toe may be serious if the profile is sharp at the bottom of the undercut. If an undercut is not present, the transition of the excess weld material to the base material still gives a stress concentration at the weld toe. Slag inclusions can be serious defects for fatigue crack initiation, more than porosity due the shape of these defects. Weld defects determine the weld quality. In this respect, significant differences can exist between manually made welds and those made by automated production. The quality of a manually welding is dependent on the competence of the welding operator. It requires training, practice, and skill to make good welds. Automated welding processes have been developed specifically for fast production of long weld seams and to eliminate part of the human factor. A more homogeneous weld quality is

26 The excess weld material is also called the reinforcement which is a strange term.