Chapter 2

Setting Up a Server in 30 Minutes or Less

The goal of this chapter is to walk you through the steps required to get your Snow Leopard server up and running as a basic fileserver in less than 30 minutes. For many organizations, this is the primary function and the first task assigned to a server installed on their premises. However, over time, most businesses will want to use more features than just a fileserver, so this chapter will ensure that, while accomplishing the primary task of creating a filesystem, you will be able to use other features in the future without having to start over. In the process of going through this chapter, we will touch upon many subjects that are addressed in more depth in other chapters of the book; however, we have found that it is best to provide a context for these services first before presenting the more technical and abstract components of them.

Before You Begin

Mac OS X Server 10.6 has roughly the same requirements as the Mac OS X 10.6 client. This isn’t to say that the requirements are the minimum for every installation. Knowing how many users will interact with each service and whether the server can handle the load is key to building a long-term solution.

The minimum requirements for Mac OS X Server 10.6 include the following:

- Apple computer with an Intel processor
- 10GB of available hard drive space
- 2GB of RAM

The two most common systems from Apple to use as a server are the Mac Pro and the Xserve. Although it is common to recommend an Xserve for most business applications, there are circumstances (such as space limitations or cost limitations) where we would recommend a Mac Pro. It is also possible to use an iMac or even a Mac mini as a server; however, it is not recommended because of their consumer design and primarily their limitation when it comes to expandability in terms of storage and memory.
Although the Xserve and Mac Pro provide multiple options for storing data, whichever options you choose, you will want to account for the separation of the boot volume and the actual data storage area. Specifically, for any server, you want to have at least two volumes, one acting as the boot volume, storing the operating system and any configuration files, and the other acting as the storage or data volume, holding all the client files, share points, web sites, and other information that the server shares with other computers. The reason for this divide is simple: by backing up and documenting the relatively small amount of information pertaining to the server configuration, you can reformat and reinstall the boot partition while leaving your fileshare untouched. Or in the case of upgrading or migrating your server to a new physical machine, you only have to be concerned about moving the data volume (which could be stored on an external storage solution) instead of trying to locate it among the server’s boot volume as well.

From a planning perspective, you will want to have at least 80GB available (currently the Xserve ships with a 160GB drive) just to hold the OS and any local system caches. (The Software Update server, for example, downloads to the boot drive by default, which can easily fill up your boot drive if you just used the minimum 10GB benchmark.) The data volume can be an external RAID, such as a Promise RAID, or if your server came with a hardware RAID card, you could use various RAID configurations to create a boot partition and a data partition; Apple is now offering solid-state drives to be included with an Xserve, which is a perfect place to put the boot volume while keeping the data on the larger (and less expensive) removable drives. There are many options to how you can create these two volumes, but the end result is you want to ensure that your server OS space is separated from the client access space.

Network Considerations

OS X Server does not like having its IP address changed on it after it has been set up and configured. Snow Leopard is so reliant on DNS and IP addressing working properly that it will automatically set up its own limited DNS server in order to function correctly. That is why it is essential to determine what IP address and DNS name to use before you install the OS, because once you have started configuring the server, making changes to those settings requires resorting to the command line and may lead to some service issues down the line.

NOTE: DNS stands for Domain Name System and is what is used to translate your.server.com to 192.168.10.2, for example. 10.6 is very dependent on this translation process being accurate.

If you are using a standard commodity network router, you should consider what your current subnet is and how it is configured. Most consumer routers create a single class C subnet (allowing for 253 unique IP addresses to be controlled by it), and unless