Modern Clock Distribution Systems

Simon Tam

Intel Corporation (SC12-408)

2.1 Introduction

Modern clock distribution design continues to face challenges in spite of significant advances in the last decade. We can distinguish three primary challenges. The first is the need to support higher clock frequencies based on the strong correlation between frequency and chip performance. Figure 2.1 shows processor clock frequency trend suggesting a continuous exponential increase in clock frequency with variable rates. Second, process technology scaling allows higher level of integration and larger die size leading to higher clock loading and larger distances the clock network needs to traverse. The final challenge is that technology scaling leads to an increase in on-die variations that may degrade clock performance if not properly addressed.

In order to address these design challenges successfully, it is necessary to understand the fundamental clocking requirements, key design parameters that affect clock performance, different clock distribution topologies and their trade-offs, and design techniques needed to overcome certain limitations. In this chapter, the following topics are presented:

- Definitions and Design Requirements
- Clock Distribution Topologies
- Microprocessor Clock Distributions
- Clock Design for Test and Manufacturing
- Elements of Clock Distribution Circuits
- Clock DFX (Design-for-Test and Design-for-Manufacturing) Techniques
- Multiclock Domain Distributions
- Future Directions
2.2 Definitions and Design Requirements

Synchronous circuits may be simplified to have two timing limitations: setup (MAX delay) and hold (MIN delay). Setup specifies whether the digital signal from one stage of the sequential structure has sufficient time to travel to and “set-up” before being captured by the next stage of the sequential structure. Hold specifies whether the digital signal from the current state within a sequential structure is immune from contamination by a signal from a future state due to a fast path. Figure 2.2 shows a typical synchronous sequential structure bounded by two flip-flops with a logic circuit that exhibits a circuit delay of value T_d. The sequential elements are clocked by a source clock Ck_1 and a destination clock Ck_2.

Clocks Ck_1 and Ck_2 can be spatially far apart on die as shown in Fig. 2.3. In this illustration, clocks Ck_1 and Ck_2 have their root at a common point (Clock Gen.) and are routed through the on-die clock distribution before arriving at their respective destinations. Locations A and B constitute the source and destination of the sequen-