Chapter 8
Introduction to Off-Chip Crosstalk

Integrated circuit (IC) performance has increased at an exponential rate since the first patent was issued to Robert Noyce of Fairchild Semiconductor in 1961 [10]. Since the advent of the IC, the number of transistors on an integrated circuit has roughly doubled every 18 months. This trend, also known as Moore’s Law [96], has been consistently met over the past 45 years. This increase in system performance on the IC is predicted by the International Technology Roadmap for Semiconductors (ITRS) [11] to continue to follow Moore’s Law into the foreseeable future. Historically, the gate delay of the digital circuitry has limited IC performance [59]; however, over the past decade the bottleneck of system performance has shifted from the gate delay of the integrated circuit to the package parasitics [96]. While package performance has steadily improved, it has not kept pace with the increases in integrated circuit performance. Package performance is predicted by the ITRS to only double over the next decade. This imbalance in performance expectations between the IC and the package is a major concern for system designers and for the continuation of Moore’s Law.

The limitation in package performance comes from the parasitic inductance and capacitance in the electrical interconnect [32, 57, 96]. Package interconnect has historically been designed to meet mechanical, thermal, and cost objectives. In the past, the electrical performance of the interconnect was not an issue since it caused a relatively small performance degradation relative to the gate delay of the IC transistors [59]; however, with the dramatic improvement in transistor gate delay, package performance is now the leading determinant of the overall system performance.

8.1 The Role of IC Packaging

The purpose of an IC package is to electrically and mechanically connect the integrated circuit substrate to the system substrate. The most common substrate used in Very Large Scale Integrated (VLSI) circuitry is silicon [59]. Silicon offers a host of electrical advantages that allow the implementation of large numbers of transistors in a cost-effective and easy-to-manufacture manner. In VLSI silicon designs, conductors are most commonly implemented using Polysilicon ($p-Si$), Aluminum (Al), and Copper (Cu). Insulating layers in VLSI designs are typically implemented using
Silicon Oxide (SiO_2) and Silicon Nitride (Si_3N_4). The photolithography and deposition processes used in IC fabrication allow extremely small feature sizes to be printed on the substrate. Currently, feature sizes as small as 65 nm are being successfully implemented using VLSI processes [84].

System level interconnect in digital systems is typically constructed using printed circuit board (PCB) technology [32]. PCBs typically use Copper as their conducting layer. Insulating layers are implemented using dielectric materials such as FR4, Nelco-13, GETEK®, and Teflon. PCBs are constructed using a lamination process. Modern lamination processes are capable of producing minimum feature sizes between 4 and 100 μm.

An IC package serves many purposes. The first is to electrically connect the leads on the IC to the corresponding leads on the system PCB. Since the feature sizes on the IC are much smaller than the feature sizes on the PCB, the IC cannot be mounted directly to the system PCB. The package serves as a density translator for the electrical signals that will connect extremely fine-pitch signals on the IC to coarser-pitched signals on the PCB.

The second purpose of the package is to protect the substrate of the IC. The IC substrate consists of a very thin crystal of silicon that has transistors and interconnect deposited on it. This substrate is brittle and can be easily fractured, leading to circuit failure [96]. The package serves as a mechanical barrier and hermetic seal between the silicon substrate and the outside environment. In this manner the substrate is isolated from contamination and humidity, which can also lead to IC failures. In addition, the package absorbs thermal expansion mismatches between the silicon substrate and the system PCB. If the thermal mismatches were completely absorbed by the silicon substrate, it would lead to stress fractures and circuit failure.

The third major purpose of IC packaging is to remove heat from the IC substrate. Modern ICs consist of millions of transistors that each consume current and dissipate power. The cumulative power dissipation of the transistors lead to the generation of extreme amounts of heat in a relatively small area. This high thermal density adversely effects circuit performance by increasing the gate delay and shortening the life of the devices on the IC [59]. The typical range of operating junction temperatures for modern VLSI designs is between 80°C and 120°C on the silicon substrate [40, 59]; however, modern microprocessors are projected by the ITRS to surpass the 100 Watt power dissipation mark within the next couple of years [40]. All this power is dissipated by substrates that range from 5 to 20 mm² in size [54, 62]. The package serves as a heat transfer system that removes the heat from the IC substrate. The heat is delivered to a package surface from which it can ultimately be absorbed by ambient air. By doing this, the package can keep the circuitry on the IC within the acceptable range of junction temperatures. This leads to consistent and predictable performance of the devices on the IC substrate.

Historically, the thermal and mechanical aspects of the package were the main focus of the package design [96]. Since the gate delay of the devices on the IC were the largest source of performance limitation, the electrical interconnect in the package was optimized for mechanical and thermal purposes. This approach has been successful for the past 40 years. Only recently has the electrical interconnect in